

CSR Initiative of Matrix Education, Sikar to motivate and reward young talent.

```
\(\checkmark\) Total Questions : 60
```

『 Duration : 2 Hrs.

PAPER PATTERN

Part	(I) Physics	(II) Chemistry	(III) Biology or Maths
Number of Questions	20	20	20

Marking Scheme: +4 For Correct Answer (One mark will be deducted for wrong answer)

Instructions :

1. This Booklet is your Question Paper. DO NOT break seal of Booklet until the invigilator instructs to do so.
2. The Answer Sheet is provided to you separately which is a machine readable Optical Response Sheet (ORS). You have to mark your answer in the ORS by darkening bubble, as per your answer choice , by using Black /Blue ball point pen only.
3. If you are found involved in cheating or disturbing others then your ORS will be cancelled.
4. Do not damage the ORS sheet in any manner. If ORS is damaged or not completed properly, your results will not be prepared.
5. If you have any confusion in filling-up ORS sheet, please contact your invigilator. Incomplete ORS will be not be evaluated.
6. You can take the question paper home once the ORS is submitted.

Answer Key and Video Solutions Kindly Scan

Where producing outstanding results is a habit!

JEE ADVANCED TOPPERS

KVPY TOPPERS

STSE TOPPERS

OUR BOARD TOPPERS

Authenticity of result, promise of Matrix!

Remarkable result growth in both JEE Main \& Advanced on a consistent basis

Note : All results are from Matrix year long classroom program at Sikar only.
"Authenticity of result, promise of Matrix"

HIGHLIGHTS at MATRIX

Total students qualified in JEE Main 6700+

students have been qualified in JEE main from matrix till date.

2500+

students have qualified JEE Advanced till date - Highest in Sikar

2000+

final admissions in various top IITs over last 5 years Highest in Sikar

3500+

selection in NIT/IIITs and other or other Prestigious Universities Highest in Sikar

2023 result
Top score in JEE Main 2023 Mayank Soni
Rank-34

Top scorer
JEE Advanced 2023
Mayank Soni
AIR-

Matrix System has produced one of the highest
NDA
selections in Sikar at a very early stage.
$\square \underbrace{}_{\text {selections }}$
in NDA 2023
April attempt!

200 Doctors

 in very 1st year of Matrix NEET DivisionAll India Rank 6 in KVPY 2021: MANAS JAJODIA

55+ total selections in KVPY over last 4 years 45+

The Most

INNOVATIVE
INSTITUTE for
NEET, JEE \&
Pre-foundation
Covering \& Serving

Major State of the Country

More than
40,000
students have been beneficiary of Matrix system till date

Matrix has the largest pre-foundation career program in Sikar with highest number of enrolment and top results in all sort of competitive examinations.

Every student matters! Every student has potential!

Highest quality of management and student care for each student

PART I : PHYSICS

This section contains 20 Multiple Choice Questions (Q:01 to Q:20). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

1. Two large conducting parallel plates A and B are separated by 2.4 m . A uniform field of $1500 \mathrm{~V} / \mathrm{m}$, in the positive x -direction, is produced by charges on the plates. The center plane at $x=0 m$ is an equipotential surface on which $\mathrm{V}=0$. An electron is projected from x $=0 \mathrm{~m}$, with an initial kinetic energy $\mathrm{K}=300$ eV , in the positive x -direction, as shown. KE of electron when it reaches plate A is :

(A) 300 eV
(B) 2100 eV
(C) 1800 eV
(D) 600 eV
2. Consider a solid cube made up of insulating material having a uniform volume charge density. Assuming the electrostatic potential to be zero at infinity, the ratio of the potential at a corner of the cube to that at the centre will be
3. दो विशाल चालक समान्तर प्लेटें A तथा $\mathrm{B}, 2.4 \mathrm{~m}$ द्वारा पृथक है। प्लेटों पर उपस्थित आवेशों द्वारा धनात्मक x -दिशा में $1500 \mathrm{~V} / \mathrm{m}$ का एकसमान क्षेत्र उत्पन्न किया जाता है। $\mathrm{x}=0 \mathrm{~m}$ पर उपसिथत केन्द्रीय तल एक समविभव पृष्ठ है जिस पर $\mathrm{V}=0$ है। एक इलेक्ट्रॉन $\mathrm{x}=0 \mathrm{~m}$ से दर्शाये अनुसार धनात्मक x -दिशा में प्रारम्भिक गतिज ऊर्जा $\mathrm{K}=300 \mathrm{eV}$ से प्रक्षेपित किया जाता है। प्लेट A पर पहुंचने पर इलेक्ट्रॉन की गतिज ऊर्जा है :

(A) 300 eV
(B) 2100 eV
(C) 1800 eV
(D) 600 eV
4. एकसमान आयतन आवेश घनत्व वाले कुचालक पदार्थ से बने एक ठोस घन पर विचार कीजिए। सिथर वैद्युत विभव को अनंत पर शून्य मानते हुए, घन के एक कोने पर विभव और केंद्र पर विभव का अनुपात होगा

Space for rough work

(A) $1: 1$
(B) $1: 2$
(C) $1: 4$
(D) $1: 8$
3. The particle of mass m and charge q is thrown with initial velocity v_{0} at an angle α with the horizontal. In space there exists an electric field of strength E at angle β with the downward vertical away from the point of projection as shown in figure. The time of flight is :

(A) $\frac{2 v_{0} \cos \alpha}{\left(\frac{q E}{m} \cos \beta+g\right)}$
(B) $\frac{\mathrm{v}_{\mathrm{o}} \cos \alpha}{\left(\frac{\mathrm{qE}}{\mathrm{m}} \sin \beta+\mathrm{g}\right)}$
(C) $\frac{2 v_{0} \sin \alpha}{\left(\frac{q E}{m} \cos \beta+g\right)}$
(D) $\frac{\mathrm{v}_{\mathrm{o}} \sin \alpha}{2\left(\frac{\mathrm{qE}}{\mathrm{m}} \cos \beta+\mathrm{g}\right)}$
4. Two uniformly charged nonconducting spheres, each of radius R, are fixed in a gravity free space as shown in the figure. If an electron is released at rest from the point A , then its speed just before striking the other sphere is (mass of electron $=m_{e}$)

(A) $\sqrt{\frac{2 \mathrm{Qe}}{9 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}}}$
(B) $\sqrt{\frac{8 \mathrm{Qe}}{9 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}}}$
(A) $1: 1$
(B) $1: 2$
(C) $1: 4$
(D) $1: 8$
3. आवेश q तथा द्रव्यमान m वाले कण को क्षैतिज के साथ α कोण पर प्रारम्भिक वेग v_{0} से फेंका जाता है। समष्टि में प्रक्षेपण बिन्दु से दूर नीचे की ओर चित्रानुसार ऊर्ध्वाधर से कोण β पर सामर्थ्य E वाला विद्युत क्षेत्र विद्यमान है तो उड्डयन काल होगा:-

(A) $\frac{2 v_{0} \cos \alpha}{\left(\frac{q E}{m} \cos \beta+g\right)}$
(B) $\frac{\mathrm{v}_{\mathrm{o}} \cos \alpha}{\left(\frac{\mathrm{qE}}{\mathrm{m}} \sin \beta+\mathrm{g}\right)}$
(C) $\frac{2 \mathrm{v}_{\mathrm{o}} \sin \alpha}{\left(\frac{\mathrm{qE}}{\mathrm{m}} \cos \beta+\mathrm{g}\right)}$
(D) $\frac{\mathrm{v}_{\mathrm{o}} \sin \alpha}{2\left(\frac{\mathrm{qE}}{\mathrm{m}} \cos \beta+\mathrm{g}\right)}$
4. जैसा कि चित्र में दिखाया गया है, दो एकसमान रूप से आवेशित कुचालक गोले, जिनकी प्रत्येक की त्रिज्या A है, एक गुरूत्व मुक्त स्थान में स्थिर हैं। यदि एक इलेक्ट्रॉन को बिंदु A से विराम से छोड़ा जाता है, तब दूसरे गोले से टकराने से ठीक पहले इसकी चाल क्या है? (इलेक्ट्रॉन का द्रव्यमान $=\mathrm{m}_{\mathrm{e}}$)

(A) $\sqrt{\frac{2 \mathrm{Qe}}{9 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}}}$
(B) $\sqrt{\frac{8 \mathrm{Qe}}{9 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}}}$

Space for rough work

(C) $\sqrt{\frac{16 \mathrm{Qe}}{9 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}}}$
(D) $\sqrt{\frac{4 \mathrm{Qe}}{9 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}}}$
5. In the circuit shown in figure, the ratio of charges on $5 \mu \mathrm{~F}$ and $4 \mu \mathrm{~F}$ capacitor is:

(A) $4 / 5$
(B) $3 / 5$
(C) $3 / 8$
(D) $1 / 2$
6. The capacitance of the capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} are $4 \mu \mathrm{~F}, 6 \mu \mathrm{~F}$ and $12 \mu \mathrm{~F}$ respectively as shown, and the switch S remains closed for a long time. When the switch S is opened, which of the following statements will be correct about the current flowing through the battery B?

(A)A finite and constant current will flow
(B) A finite current will flow initially that will decrease exponentially with time
(C) No current will flow
(D) Information is insufficient to predict
(C) $\sqrt{\frac{16 \mathrm{Qe}}{9 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}}}$
(D) $\sqrt{\frac{4 \mathrm{Qe}}{9 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{R}}}$
5. चित्र में दर्शाये गये परिपथ में $5 \mu \mathrm{~F}$ तथा $4 \mu \mathrm{~F}$ संधारित्र पर आवेशों का अनुपात होगा :

(A) $4 / 5$
(B) $3 / 5$
(C) $3 / 8$
(D) $1 / 2$
6. जैसा कि दिखाया गया है, संधारित्रों $\mathrm{C}_{1}, \mathrm{C}_{2}$ और C_{3} की धारिताएँ क्रमशः $4 \mu \mathrm{~F}, 6 \mu \mathrm{~F}$ और $12 \mu \mathrm{~F}$ हैं और स्विच S लंबे समय तक बंद रहता है। जब स्विच S खोला जाता है, तो बैटरी B के माध्यम से प्रवाहित धारा के बारे में निम्नलिखित में से कौन सा कथन सही होगा?

(A) एक परिमित एवं एकसमान धारा प्रवाहित होगी
(B) प्रारंभ में एक सीमित धारा प्रवाहित होगी जो चरघातांकीय रूप से घटेगी
(C) कोई धारा प्रवाहित नहीं होगी
(D) अनुमान के लिए सूचना अपर्याप्त है
7. The four arms of a Wheatstone bridge have resistances as shown in the figure. A galvanometer of 15Ω resistance is connected across BD. Calculate the current through the galvanometer when a potential difference of 10 V is maintaned across AC.

(A) 2.44 mA
(B) 4.87 mA
(C) 24.4 mA
(D) 48.7 mA
8. Two cylindrical rods of same cross-section area and same length are connected in series to an ideal cell as shown. The resistivity of the left rod is ρ and that of the right rod is 2ρ Then, variation of potential at any point P at a distance x from the left end of the combined system is most appropriately shown in which of the plots ?

7. चित्रानुसार व्हीस्टोन ब्रिज के चार भुजाओ में चार प्रतिरोध लगाये गये है। B तथा D बिन्दु के बीच 15Ω प्रतिरोध का एक गैलवेनों मीटर जोड़ा जाता है। जब A तथा C के बीच 10 V का विभावन्तर लगाया जाता है तब गैलवेनों मीटर में से धारा ज्ञात करें।

(A) 2.44 mA
(B) 4.87 mA
(C) 24.4 mA
(D) 48.7 mA
8. जैसा कि दिखाया गया है, समान अनुप्रस्थ-काट क्षेत्रफल और समान लंबाई की दो बेलनाकार छड़ें एक आदर्श सेल से श्रेणीक्रम में जुड़ी हुई हैं। बाई छड़ की प्रतिरोधकता ρ है और दाईं छड़ की प्रतिरोधकता 2ρ है। तब, संयुक्त निकाय के बाएं छोर से x दूरी पर किसी भी बिंदु P पर विभव का परिवर्तन सबसे उचित रूप से निम्न में से किस आलेख में दिखाया गया है?

Space for rough work

(B)

(C)

(D)

9. The $\mathrm{V}-\mathrm{I}$ graphs for a conductor at temperature T_{1} and T_{2} are shown in the figure. $\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ is proportional to

(A) $\tan \theta$
(B) $\sin \theta$
(C) $\cot 2 \theta$
(D) $\cos 2 \theta$
(A)

(B)

(C)

(D)

9. तापमान T_{1} और T_{2} पर एक चालक के लिए $\mathrm{V}-\mathrm{I}$ ग्राफ को चित्र में दर्शाया गया है। $\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$, \qquad के समानुपाती है।

(A) $\tan \theta$
(B) $\sin \theta$
(C) $\cot 2 \theta$
(D) $\cos 2 \theta$
10. A current of 2 A flows through a 2Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a 9Ω resistor. The internal resistance of the battery is
(A) $\frac{1}{3} \Omega$
(B) $\frac{1}{4} \Omega$
(C) 5Ω
(D) 0.5Ω
11. At a certain place, the angle of dip is 30° and the horizontal component of Earth's magnetic field is $50 \mu \mathrm{~T}$. The total magnetic field (in $\mu \mathrm{T}$) of the Earth at this place, is
(A) $100 \sqrt{3} \mu \mathrm{~T}$
(B) $100 \mu \mathrm{~T}$
(C) $\frac{100}{\sqrt{3}} \mu \mathrm{~T}$
(D) $200 \mu \mathrm{~T}$
12.

The figure gives experimentally measured B vs. H variation in a ferromagnetic material. The retentivity, co-ercivity and saturation, respectively, of the material are :
10. एक बैटरी से जुड़े 2Ω के प्रतिरोधक के माध्यम से 2 A की धारा प्रवाहित होती है। समान बैटरी 9Ω के प्रतिरोधक से जुड़े होने पर 0.5 A की धारा की आपूर्ति करती है। बैटरी का का आंतरिक प्रतिरोध है :
(A) $\frac{1}{3} \Omega$
(B) $\frac{1}{4} \Omega$
(C) 5Ω
(D) 0.5Ω
11. एक निश्चित स्थान पर नति कोण 30° है और पृथ्वी के चुंबकीय क्षेत्र का क्षैतिज घटक $50 \mu \mathrm{~T}$ है। इस स्थान पर प्रथ्वी का कुल चुंबकीय क्षेत्र ($\mu \mathrm{T}$ में) है:
(A) $100 \sqrt{3} \mu \mathrm{~T}$
(B) $100 \mu \mathrm{~T}$
(C) $\frac{100}{\sqrt{3}} \mu \mathrm{~T}$
(D) $200 \mu \mathrm{~T}$

चित्र में एक लौह-चुंबकीय (ferromagnetic) पदार्थ के लिये एक प्रयोग द्वारा नापे गये B vs. H का विचरण दिखाया गया है। इस पदार्थ की धारणशीता, निग्राहिता व संतृप्तता का मान है क्रमश:-

Space for rough work

(A) $1.0 \mathrm{~T}, 50 \mathrm{~A} / \mathrm{m}$ and 1.5 T
(B) $150 \mathrm{~A} / \mathrm{m}, 1.0 \mathrm{~T} / \mathrm{m}$ and 1.5 T
(C) $1.5 \mathrm{~T}, 50 \mathrm{~A} / \mathrm{m}$ and 1.0 T
(D) $1.5 \mathrm{~T}, 50 \mathrm{~A} / \mathrm{m}$ and 1.0 T
13. A conductor is carrying a current i. The magnetic field intensity at the point O which is the common centre for three arcs is

(A) $\frac{5 \mu_{0} i \theta}{24 \pi R}$
(B) $\frac{\mu_{0} \mathrm{i} \theta}{24 \pi \mathrm{R}}$
(C) $\frac{11 \mu_{0} \mathrm{i} \theta}{24 \pi \mathrm{R}}$
(D) Zero
14. The figure shows two regions of uniform magnetic fields of strengths B and 2B. A charged particle of mass m and charge q enters the region of the magnetic field with a velocity $\mathrm{v}=\frac{\mathrm{qBW}}{\mathrm{m}}$, where W is the width of each region of the magnetic field. The time taken by the particle to come out of the region of the magnetic field is
(A) $1.0 \mathrm{~T}, 50 \mathrm{~A} / \mathrm{m}$ तथा 1.5 T
(B) $150 \mathrm{~A} / \mathrm{m}, 1.0 \mathrm{~T} / \mathrm{m}$ तथा 1.5 T
(C) $1.5 \mathrm{~T}, 50 \mathrm{~A} / \mathrm{m}$ तथा 1.0 T
(D) $1.5 \mathrm{~T}, 50 \mathrm{~A} / \mathrm{m}$ तथा 1.0 T
13. एक चालक एक विद्युत धारा i का वहन कर रहा है। O बिंदु पर चुंबकीय क्षेत्र की तीव्रता, जो तीन चापों का उभयनिष्ठ केंद्र है, है:

(A) $\frac{5 \mu_{0} \mathrm{i} \theta}{24 \pi \mathrm{R}}$
(B) $\frac{\mu_{0} \mathrm{i} \theta}{24 \pi \mathrm{R}}$
(C) $\frac{11 \mu_{0} \mathrm{i} \theta}{24 \pi \mathrm{R}}$
(D) शून्य
14. चित्र B और 2 B के एकसमान चुंबकीय क्षेत्र तीव्रता के दो क्षेत्रों को दर्शाता है। m द्रव्यमान और आवेश q का एक आवेशित कण चुंबकीय क्षेत्र के क्षेत्र में वेग $\mathrm{v}=\frac{\mathrm{qBW}}{\mathrm{m}}$ के साथ प्रवेश करता है, जहाँ W चुंबकिय क्षेत्र के प्रत्येक क्षेत्र की चौड़ाई है। चुंबकीय क्षेत्र के क्षेत्र से बाहर आने के लिए कण द्वारा लिया गया समय कितना है ?

Space for rough work

(A) $\frac{4 \pi m}{q B}$
(B) $\frac{2 \pi m}{q B}$
(C) $\frac{\pi m}{2 q B}$
(D) $\frac{\pi m}{q B}$
15. A wire is bent in the form of a circular arc of radius r with a straight portion AB . If the current in the wire is i, then the magnetic induction at point O is :

(A) $\frac{\mu_{0} \mathrm{i}}{2 \pi r} \tan \phi$
(B) $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}(\pi-\phi-\tan \phi)$
(C) $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}(\pi-\phi+\tan \phi)$
(D) $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}(\pi-\tan \phi)$

(A) $\frac{4 \pi m}{q B}$
(B) $\frac{2 \pi m}{q B}$
(C) $\frac{\pi m}{2 q B}$
(D) $\frac{\pi \mathrm{m}}{\mathrm{qB}}$
15. एक तार को त्रिज्या r के एक वृत्ताकार चाप के रूप में मोड़ा गया है, जिसका एक भाग AB सीधा है। यदि तार में धारा i है, तो बिंदु O पर चुंबकीय प्रेरण है :

(A) $\frac{\mu_{0} i}{2 \pi r} \tan \phi$
(B) $\frac{\mu_{0} \mathrm{i}}{2 \pi r}(\pi-\phi-\tan \phi)$
(C) $\frac{\mu_{0} \mathrm{i}}{2 \pi r}(\pi-\phi+\tan \phi)$
(D) $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}(\pi-\tan \phi)$
16. A thin ring of 10 cm radius carries a uniformly distributed charge. The ring rotates at a constant angular speed of $40 \pi \mathrm{rad} \mathrm{s}^{-1}$ about its axis, perpendicular to its plane. If the magnetic field at its centre is $3.8 \times 10^{-9} \mathrm{~T}$, then the charge carried by the ring is close to : $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)$.
(A) $4 \times 10^{-5} \mathrm{C}$
(B) $3 \times 10^{-5} \mathrm{C}$
(C) $7 \times 10^{-6} \mathrm{C}$
(D) $2 \times 10^{-6} \mathrm{C}$
17. The figure shows a square loop L of side 5 cm which is connected to a network of resistances. The whole setup is moving towards right with a constant speed of $1 \mathrm{~cm} \mathrm{~s}^{-1}$. At some instant, a part of L is in a uniform magnetic field of 1 T , perpendicular to the plane of the loop. If the resistance of L is 1.7Ω, the current in the loop at that instant will be close to:
\vec{B}

(A) $170 \mu \mathrm{~A}$
(B) $60 \mu \mathrm{~A}$
(C) $150 \mu \mathrm{~A}$
(D) $115 \mu \mathrm{~A}$
18. A transformer consisting of 300 turns in the primary and 150 turns in the secondary gives output power of 2.2 kW . If the current in the secondary coil is 10 A , then the input voltage and current in the primary coil are :
(A) 440 V and 5 A
(B) 220 V and 20 A
(C) 220 V and 10 A
(D) 440 V and 20 A
16. 10 cm त्रिज्या की एक वलय पर आवेश एकसमान रूप से वितरित है। यह वलय $40 \pi \mathrm{rad} \mathrm{s}^{-1}$ के समान कोणीय वेग से अपने अक्ष के परितः घूर्णन कर रही है, जो वलय के समतल के लम्बवत् है। यदि इसके केन्द्र पर चुम्बकीय क्षेत्र $3.8 \times 10^{-9} \mathrm{~T}$ है, तो वलय पर आवेश लगभग होगा :
($\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$)
(A) $4 \times 10^{-5} \mathrm{C}$
(B) $3 \times 10^{-5} \mathrm{C}$
(C) $7 \times 10^{-6} \mathrm{C}$
(D) $2 \times 10^{-6} \mathrm{C}$
17. आरेख में 5 cm भुजा का एक वर्गाकार पाश L दर्शाया गया है, जो प्रतिरोधों के एक परिपथ से जुड़ा है। यह संयोजन $1 \mathrm{~cm} \mathrm{~s}^{-1}$ की एक समान चाल से दायीं ओर गति कर रहा है। किसी क्षण L का एक भाग 1 T तीव्रता के एकसमान चुम्बकीय क्षेत्र में है। यह क्षेत्र पाश L के समतल के लम्बवत् है। यदि, इस पाश का प्रतिरोध 1.7Ω है, तो इस क्षण इसमें धारा का निकट मान होगा :

(A) $170 \mu \mathrm{~A}$
(B) $60 \mu \mathrm{~A}$
(C) $150 \mu \mathrm{~A}$
(D) $115 \mu \mathrm{~A}$
18. 300 फेरों वाली प्राथमिक कुण्डली तथा 150 फेरों वाली द्वितीयक कुण्डली वाले एक ट्रांसफार्मर की निर्गत शक्ति 2.2 kW है। यदि द्वितीयक कुण्डली में धारा का मान 10 A है तो निवेशी वोल्टेज और प्राथमिक कुण्डली में धारा के मान हैं :
(A) 440 V तथा 5 A
(B) 220 V तथा 20 A
(C) 220 V तथा 10 A
(D) 440 V तथा 20 A

Space for rough work

19. In the circuit shown,

the switch S_{1} is closed at time $t=0$ and the switch S_{2} is kept open. At some later time $\left(\mathrm{t}_{0}\right)$, the switch S_{1} is opened and S_{2} is closed. The behaviour of the current I as a function of time 't' given by :
(A)

(B)

(C)

(D)

20. A conducting circular loop made of a thin wire, has area $3.5 \times 10^{-3} \mathrm{~m}^{2}$ and resistance 10Ω. It is placed perpendicular to a time dependent magnetic field $\mathrm{B}(\mathrm{t})=(0.4 \mathrm{~T}) \sin (50 \pi \mathrm{t})$. The field is uniform in space. Then the net charge flowing through the loop during $t=0$ s and $\mathrm{t}=10 \mathrm{~ms}$ is close to:
(A) 6 mC
(B) 7 mC
(C) 0.14 mC
(D) 0.21 mC
21. एक परिपथ को निम्न चित्र में दिखाया गया है :

$\mathrm{t}=0$ पर स्विच S_{1} बन्द है जबकि स्विच S_{2} खुला रहता है। किसी समय $\left(\mathrm{t}_{0}\right)$ के पश्चात् स्विच S_{1} खुला है और S_{2} बन्द है। धारा I में समय ' t ' के साथ परिवर्तन इससे दिखाया जा सकता है :
(A)

(B)

(C)

(D)

22. एक पतले चालक तार से बने हुए वृत्ताकार पाश का क्षेत्रफल $3.5 \times 10^{-3} \mathrm{~m}^{2}$ तथा प्रतिरोध 10Ω है। इसे एक लम्बवत् चुम्बकीय क्षेत्र, जो कि समय पर निर्भर किंतु एकसमान है, $\mathrm{B}(\mathrm{t})=(0.4 \mathrm{~T}) \sin$ $(50 \pi \mathrm{t})$ में रखा गया है। समय $\mathrm{t}=0 \mathrm{~s}$ से $\mathrm{t}=10 \mathrm{~ms}$ तक पाश में बहने वाले कुल आवेश का मान होगा :
(A) 6 mC
(B) 7 mC
(C) 0.14 mC
(D) 0.21 mC

Space for rough work

PART II : CHEMISTRY

This section contains 20 Multiple Choice Questions (Q:21 to Q:40). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
21. Molality of 3 g of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in 100 g of benzene is
(A) $0.56 \mathrm{~mol} / \mathrm{kg}$
(B) $0.65 \mathrm{~mol} / \mathrm{kg}$
(C) $0.50 \mathrm{~mol} / \mathrm{kg}$
(D) $0.66 \mathrm{~mol} / \mathrm{kg}$
22. The freezing point of which of the following equimolal solution is maximum :
(A) $\mathrm{K}_{2} \mathrm{HgI}_{4}$
(B) $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$
(C) $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$
(D) $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$
23. Which of the following is true:
(A) The ideal behaviour of a liquid solution is due to the fact that the different molecules present in it do not interact with one an other (B) Henry's laws deals with the variation of solubility of gas with temperature
(C) In case of negative deviation from Raoult's law, maximum boiling point azeotrope is formed
(D) The addition of a nonvolatile solute to a volatile solvent decreases the boiling point of the latter
24. 2-Bromopentane is heated with potassium ethoxide in ethanol. The major product obtained is
(A) 2-Ethoxypentane
(B) pent-1-ene
(C) cis-pent-2-ene
(D) trans-pent-2-ene
21. यदि 100 g बेन्जीन में 3 g ऐथेनोइक अम्ल
$\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ मिलाया जाता है तो विलयन की मोललता ज्ञात करो -
(A) $0.56 \mathrm{~mol} / \mathrm{kg}$
(B) $0.65 \mathrm{~mol} / \mathrm{kg}$
(C) $0.50 \mathrm{~mol} / \mathrm{kg}$
(D) $0.66 \mathrm{~mol} / \mathrm{kg}$
22. निम्नलिखित सममोलल विलयनों में से किसका हिमांक बिन्दु अधिकतम है -
(A) $\mathrm{K}_{2} \mathrm{HgI}_{4}$
(B) $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$
(C) $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$
(D) $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$
23. निम्न में से कौनसा कथन सत्य है :
(A) किसी द्रव विलयन का आदर्श व्यवहार इसलिए पाया जाता है क्योंकि विभिन्न प्रकार के अणु आपस में कोई अन्तः क्रिया नहीं करते है।
(B) किसी गैस के द्रव में विलेयता का तापमान के साथ सम्बन्ध हेनरी के नियम द्वारा समझा जा सकता है।
(C) रॉउल्ट के नियम से ऋणात्मक विचलन की स्थिति में अधिकतम क्वथनांक वाले सिथर क्वाथी मिश्रण प्राप्त होते है।
(D) किसी वाष्पशील विलायक में अवाष्पशील विलेय मिलाने पर उसका क्वथनांक कम हो जाता है।
24. 2-Bromopentane को ऐथेनोल में पोटेशियम ऐथोक्साइड के साथ गर्म किया जाता है, तो मुख्य उत्पाद क्या होगा।
(A) 2-Ethoxypentane
(B) pent-1-ene
(C) cis-pent-2-ene
(D) trans-pent-2-ene

Space for rough work

25.

Major product is :
(A)

(B)

(C)

(D)

26. What are the major products from the following reaction?

(I)

(II)

(III)

(IV)

(A) I
(B) II
(C) III
(D) IV
25.

मुख्य उत्पाद है -
(A)

(B)

(C)

(D)

26. दी गई क्रिया का मुख्य उत्पाद होगा -

(II)

(III)

(A) I
(B) II
(C) III
(D) IV

Space for rough work
27. The synthesis of alkyl fluorides is best accomplished by :
(A) Free radical fluorination
(B) Sandmeyer's reaction
(C) Finkelstein reaction
(D) Swarts reaction
28. Which one of the following forms propane nitrle as the major product?
(A) Ethyl bromide +KCN
(B) Propyl bromide +KCN
(C) Propyl bromide +AgCN
(D) Ethyl bromide +AgCN
29. Which of the following applies in the reaction,

I. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ (major product)
II. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ (minor product)
(A) Markownikoff's rule
(B) Saytzeff's rule
(C) Kharasch effect
(D) Hofmann's rule
30. Consider the following complex : $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{Cl})_{2}\right]$: inner orbital complex.
The oxidation number, number of d-electrons, number of unpaired d-electrons on the metal ion and number of isomers are respectively :
(A) $3,3,3,2$
(B) $2,4,0,6$
(C) 2, 4, 2, 2
(D) $2,4,4,4$
27. एल्काइल फ्लोराइड़ के संश्लेषण के लिए सबसे बेहतरीन विधि है ?
(A) मुक्त मूलक फ्लोरिनेशन
(B) सैन्डमायर अभिक्रिया
(C) फिंकलस्टाइन अभिक्रिया
(D) स्वार्टस अभिक्रिया
28. निम्नलिखित में से किस अभिक्रिया से प्रोपेन नाइट्राइल मुख्य उत्पाद के रूप में प्राप्त होता है?
(A) Ethyl bromide +KCN
(B) Propyl bromide +KCN
(C) Propyl bromide +AgCN
(D) Ethyl bromide +AgCN
29. निम्नलिखित में से कौनसा नियम दी गई अभिक्रिया पर लागू होता है-
$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3} \xrightarrow{\text { Alc. } \mathrm{KOH}}$
I. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ (major product)
II. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ (minor product)
(A) Markownikoff's rule
(B) Saytzeff's rule
(C) Kharasch effect
(D) Hofmann's rule
30. निम्न संकुल पर विचार कीजिए
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{Cl})_{2}\right]$, : आन्तरिक कक्षक संकुल है। इसमें, धातु आयन पर ऑक्सीकरण अंक, d इलैक्ट्रोनों की संख्या, अयुग्मित d इलैक्ट्रोनों की संख्या तथा समावयवीयों की संख्या क्रमशः है:
(A) 3, 3, 3, 2
(B) $2,4,0,6$
(C) 2, 4, 2, 2
(D) 2, 4, 4, 4
31. Correct IUPAC name of given complex is :

(A) Triamminenitrito-N-platinum(II) nitrate
(B) Triamminenitrito-O-platinum(IV) nitrate
(C) Triamminenitrito-O-platinum(II) nitrate
(D) Triamminenitrito-O-platinum(II) nitrite
32. What is the correct electronic configuration of the central atom in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ based on crystal field theory?
(A) $\mathrm{e}^{4} \mathrm{t}_{2}^{2}$
(B) $e_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
(C) $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
(D) $e^{3} t_{2}^{3}$
33. A variable, opposite external potential ($\mathrm{E}_{\text {ext }}$) is applied to the cell
$\mathrm{Zn}\left|\mathrm{Zn}^{2+}(1 \mathrm{M}) \| \mathrm{Cu}^{2+}(1 \mathrm{M})\right| \mathrm{Cu}$, of potential 1.1 V . When $\mathrm{E}_{\text {ext }}<1.1 \mathrm{~V}$ and $\mathrm{E}_{\text {ext }}>1.1 \mathrm{~V}$ respectively electrons flow from :
(A) Cathode to anode in both cases
(B) cathode to anode and anode to cathode
(C) anode to cathode and cathode to anode
(D) anode to cathode in both cases
34. The limiting molar conductivities for $\mathrm{NaCl}, \mathrm{KBr}$ and KCl are 126,152 and $150 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The molar conductivity for NaBr is
(A) $278 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(B) $176 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(C) $128 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(D) $302 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
31. दिये गये संकुल का सही IUPAC नाम है :

(A) Triamminenitrito-N-platinum(II) nitrate
(B) Triamminenitrito-O-platinum(IV) nitrate
(C) Triamminenitrito-O-platinum(II) nitrate
(D) Triamminenitrito-O-platinum(II) nitrite
32. क्रिस्टल क्षेत्र सिद्धान्त के आधार पर $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, में केन्द्रीय परमाणु का सही इलेक्ट्रॉनिक विन्यास क्या होगा?
(A) $e^{4} t_{2}^{2}$
(B) $\mathrm{e}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
(C) $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
(D) $e^{3} t_{2}^{3}$
33. 1.1 V विभव के सेल
$\mathrm{Zn}\left|\mathrm{Zn}^{2+}(1 \mathrm{M}) \| \mathrm{Cu}^{2+}(1 \mathrm{M})\right| \mathrm{Cu}$ में एक परिवर्ती विपरीत बाह्य विभव $\left(\mathrm{E}_{\text {ext }}\right)$ लगाया गया। जब $\mathrm{E}_{\text {ext }}<1.1 \mathrm{~V}$ तथा $\mathrm{E}_{\text {ext }}>1.1 \mathrm{~V}$ हो तब इलेक्ट्रॉनों का प्रवाह होगा।
(A) दोनों स्थिति में कैथोड से एनोड
(B) कैथोड से एनोड तथा एनोड से कैथोड
(C) एनोड से कैथोड तथा कैथोड से एनोड
(D) दोनों रिथति में एनोड से कैथोड
34. $\mathrm{NaCl}, \mathrm{KBr}$ तथा KCl के लिए सीमित मोलर चालकतायें क्रमशः 126,152 तथा $150 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ है। NaBr के लिए मोलर चालकताएँ है -
(A) $278 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(B) $176 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(C) $128 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(D) $302 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
35. A fuel cell develops an electrical potential from the combustion of butane at 1 bar and 298 K
$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+6.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ;$ $\Delta \mathrm{rG}^{\circ}=-2745 \mathrm{~kJ} / \mathrm{mol}$
What is E° of a cell?
(A) 4.74 V
(B) 0.547 V
(C) 4.37 V
(D) 1.09 V
36. Rate of formation of SO_{3} in the following reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$ is $100 \mathrm{~g} \mathrm{~min}^{-1}$. Hence rate of disappearance of O_{2} is :
(A) $50 \mathrm{~g} \mathrm{~min}^{-1}$
(B) $40 \mathrm{~g} \mathrm{~min}^{-1}$
(C) $200 \mathrm{~g} \mathrm{~min}^{-1}$
(D) $20 \mathrm{~g} \mathrm{~min}^{-1}$
37. The half life of a radioactive isotope is 150 years. What fraction of it would remain un-disintegrated after 450 years.
(A) 0.250
(B) 0.450
(C) 0.125
(D) 0.245
38. If the reaction $3 \mathrm{~A} \rightarrow 2 \mathrm{~B}$, rate of reaction $+\frac{\mathrm{d}(\mathrm{B})}{\mathrm{dt}}$ is equal to
(A) $-\frac{1}{3} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
(B) $-\frac{2}{3} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
(C) $+\frac{2 \mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
(D) $-\frac{3}{2} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
39. When $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ crystals are heated with conc. HCl , the gas evolved is
(A) O_{2}
(B) Cl_{2}
(C) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(D) HCl
40. The magnetic moment of Cu^{2+} ion is
(A) 2.73
(B) Zero
(C) 1.93
(D) 1.73
35. एक ईंधन सेल में 1 बार (bar) तथा 298 K पर ब्यूटेन का दहन निम्न अभिक्रिया के अनुसार हो रहा है

$$
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+6.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ;
$$

$\Delta \mathrm{rG}^{\circ}=-2745 \mathrm{~kJ} / \mathrm{mol}$ सेल के लिए E° का मान है?
(A) 4.74 V
(B) 0.547 V
(C) 4.37 V
(D) 1.09 V
36. निम्न अभिक्रिया में $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}, \mathrm{SO}_{3}$ के बनने की दर $100 \mathrm{~g} \mathrm{~min}^{-1}$ है। अतः O_{2} के विलुप्त होने की दर क्या होगी-
(A) $50 \mathrm{~g} \mathrm{~min}^{-1}$
(B) $40 \mathrm{~g} \mathrm{~min}^{-1}$
(C) $200 \mathrm{~g} \mathrm{~min}^{-1}$
(D) $20 \mathrm{~g} \mathrm{~min}^{-1}$
37. एक रेडियोएक्टिव समस्थानिक का अर्द्धआयु काल 150 वर्ष है। 450 वर्ष बाद रेडियोएक्टिव समस्थानिक का कितना अंश बचा रहेगा।
(A) 0.250
(B) 0.450
(C) 0.125
(D) 0.245
38. अभिक्रिया के लिए $3 \mathrm{~A} \rightarrow 2 \mathrm{~B},+\frac{\mathrm{d}(\mathrm{B})}{\mathrm{dt}}$ का मान निम्नलिखित में से किसके बराबर होगा-
(A) $-\frac{1}{3} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
(B) $-\frac{2}{3} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
(C) $+\frac{2 \mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
(D) $-\frac{3}{2} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
39. जब $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ क्रिस्टल को सान्द्र HCl के साथ गर्म किया जाता है तो निकलने वाली गैस है-
(A) O_{2}
(B) Cl_{2}
(C) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(D) HCl
40. Cu^{2+} आयन के लिए चुम्बकीय आघूर्ण का मान होगा-
(A) 2.73
(B) शून्य
(C) 1.93
(D) 1.73

PART III : BIOLOGY

This section contains 20 Multiple Choice Questions (Q:41 to Q:60). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
41. Which one of the following is not the function of placenta?
(A) Secretes oxytocin during parturition
(B) Facilitates supply of oxygen and nutrients to embyro
(C) Secretes estrogen
(D) Facilitates removal of carbon dioxide and waste material from embryo
42. Which one of the following statements is wrong:
(A) When pollen is shed at two-celled stage, double fertilization does not take place
(B) Vegetative cell is larger than generative cell
(C) Pollen grains in some plants remain viable for months
(D) Intine is made up of cellulose and pectin
43. A pure tall plant can be differentiated from a hybrid tall plant:
(A) By measuring length of plant
(B) By spraying gibberallins
(C) If all plants are tall after self-pollination
(D) If all plants are dwarf after self-pollination
44. The Test-tube Baby Programme employs which one of the following techniques?
(A) Zygote intra fallopian transfer (ZIFT)
(B) Intra cytoplasmic sperm injection (ICSI)
(C) Intra uterine insemination (IUI)
(D) Gamete intra fallopian transfer (GIFT)
41. निम्नलिखित में से कौनसा कार्य अपरा का नहीं है ?
(A) प्रसव के समय ऑक्सीटोसिन का स्राव करता है
(B) भूण को ऑक्सीजन और पोषक पदार्थ उपलब्ध कराने में मदद करता है
(C) एस्ट्रोजन का स्राव करता है
(D) भूण में से कार्बन डाईऑक्साइड तथा अपशिष्ट पदार्थ को बाहर निकालने में सहायता करता है
42. निम्नलिखित में कौन सा एक कथन गलत हैं :
(A) जब पराग दो कोशिका अवस्था में झड़ता है तो दोहरा निषेचन नहीं हो पाता
(B) कायिक कोशिका जनन कोशिका से अधिक बड़ी होती है
(C) कुछ पौधों में पराग कण कई कई माह तक जीवनक्षम बने रहते है
(D) अंतःचोल सेल्यूलोज तथा पैक्टिन का बना होता हैं
43. एक शुद्ध लम्बे पादप को एक संकर लम्बे पादप से विभेदित किया जा सकता है :
(A) पादप की लम्बाई के मापन द्वारा
(B) जिबरेलीन के छिड़काव द्वारा
(C) स्वपरागण के बाद यदि सभी पादप लम्बे है
(D) स्वपरागण के बाद यदि सभी पादप बौने है।
44. टेस्ट ट्यूब बेबी कार्यक्रम में कौनसी तकनीक का प्रयोग करते हैं?
(A) युग्मनज अन्तः फैलोपियन स्थानान्तरण (ZIFT)
(B) अन्तः कोशिकाद्रव्यी शुक्राणु निक्षेपण(ICSI)
(C) अन्तः गर्भाशयी वीर्यसेचन (IUI)
(D) युग्मक अन्तः फैलोपियन स्थानान्तरण (GIFT)

Space for rough work

45. Which of the following family planning method provides additional benefit of protecting the user from contacting STIs and AIDS?
(A)

(B)

(C)
(D) All of these
46. During DNA replication, okazaki fragments are used to elongate :
(A) The leading strand towards replication fork
(B) The lagging strand towards replication fork
(C) The leading strand away from replication fork
(D) The lagging strand away from the replication fork
47. Select the option including all sexually transmitted infections:
(A) Gonorrhoea, Syphilis, Genital herpes
(B) Gonorrhoea, Malaria, Genital herpes
(C) AIDS, Malaria, Filariasis
(D) Cancer, AIDS, Syphilis
48. The finches of Galapagos islands provide an evidence in favour of :
(A) Biogeographical evolution
(B) Special creation
(C) Evolution due to mutation
(D) Retrogressive evolution
49. निम्न में से कौनसा परिवार नियोजन उपाय, यौन संचरित रोगों तथा AIDS से बचाने हेतु उपयोगी होता है ?
(A)

(B)

(C)

(D) उपरोक्त सभी
50. DNA प्रतिकृतियन के दौरान ऑकाजाकी खण्ड :
(A) प्रतिकृति द्विशाखा की ओर अग्र रज्जुक (Leading strand) का दीर्घीकरण करते हैं
(B) प्रतिकृति द्विशाखा की ओर पश्च रज्जुक (Lagging strand) का दीर्घीकरण करते हैं
(C) प्रतिकृति द्विशाखा से विपरीत दिशा में अग्र रज्जुक का दीर्घीकरण करते हैं
(D) प्रतिकृति द्विशाखा से विपरीत दिशा में पश्च रज्जुक का दीर्घीकरण करते हैं
51. यौन संचरित संक्रमणों के सही विकल्प का चयन करें :
(A) सुजाक, सिफिलिस, जननिक हर्पिस
(B) सुजाक, मलेरिया, जननिक हर्पिस
(C) AIDS, मलेरिया, फाइलेरिएसिस
(D) कैंसर, AIDS, सिफिलिस
52. गैलेपेगोस द्वीपसमूह की फिंचें, किसके पक्ष में प्रमाण प्रस्तुत करती हैं?
(A) जैवभौगोलिक उद्विकास
(B) विशिष्ट सृष्टिवाद
(C) उत्परिवर्तन के कारण होने वाला उद्विकास
(D) प्रतिगामी उद्विकास

Class-XII
49. Identify the human developmental stage shown below as well as the related right place of its occurrence in a normal pregnant woman, and select the right option for the two together :

Developmental stage Site of occurrence
(A) Late morula
(B) Blastula
(C) Blastocyst
Middle part of Fallopian tube
(D) 8-celled morula
End part of Fallopian tube
Uterine wall
Starting point of Fallopian tube
50. Male gametes in flowering plants are formed by :
(A) Pollen cell
(B) Generative cell
(C) Pollen tube cell
(D) Pollen mother cell
51. The extinct human who lived $1,00,000$ to 40,000 years ago, in Europe, Asia and parts of Africa, with short stature, heavy eye brows, retreating foreheads, large jaws with heavy teeth, stocky bodies, a lumbering gait and stooped posture was :
(A) Ramapithecus
(B) Homo habilis
(C) Neanderthal human
(D) Cro-magnan human
49. नीचे एक सामान्य गर्भवती महिला में मानव के परिवर्धन की अवस्थायें व इनकी घटना के स्थल की सारणी दी गयी है, इन दोनों के संदर्भ में सही विकल्प का चयन कीजिये :

परिवर्धन की अवस्थायें
(A) पश्च मोरूला
(B) ब्लास्टुला
(C) कोरकपुटी
(D) 8 -कोशिकीय मोरूला

घटना स्थल
फेलोपियन नलिका का मध्य भाग
फेलोपियन नलिका का अंतिम भाग
गर्भाशयी भित्ति
फेलोपियन नलिका का प्रारम्भिक बिन्दु
50. पुष्पी पादपों में नर युग्मक किसके द्वारा बनते है :
(A) परागकोशिका द्वारा
(B) जननिक कोशिका द्वारा
(C) परागनलिका कोशिका द्वारा
(D) परागमातृ कोशिका द्वारा
51. विलुप्त मानव जो $1,00,000$ से 40,000 वर्ष पूर्व यूरोप, एशिया व अफ्रीका के भागों में रहते थे और इनका छोटा कद, भारी भोहें, पीछे की ओर ललाट, बड़े जबड़े व दांत, गठीला शरीर, लंबरिंग चाल व झुकी हुई मुद्रा आदि लक्षण मौजूद थे, वह मानव था :
(A) रामापिथेकस
(B) होमो हेबिलिस
(C) निएण्डरथल मानव
(D) क्रो-मेग्नन मानव

Space for rough work

52. Megasporangium is equivalent to :
(A) Fruit
(B) Nucellus
(C) Ovule
(D) Embryo sac
53. What is the correct sequence of sperm formation?
(A) Spermatogonia, spermatocyte, spermatozoa, spermatid
(B) Spermatogonia, spermatozoa, spermatocyte, spermatid
(C) Spermatogonia, spermatocyte, spermatid, spermatozoa
(D) Spermatid, spermatocyte, spermatogonia, spermatozoa
54. The given figure shows a typical anatropous ovule. What do A, B, C \& D represents :

(A)A \rightarrow Hilum, $\mathrm{B} \rightarrow$ Funicle, $\mathrm{C} \rightarrow$ Nucellus,
$\mathrm{D} \rightarrow$ Micropyle
(B) A \rightarrow Hilum, $\mathrm{B} \rightarrow$ Outer integument,
$\mathrm{C} \rightarrow$ Nucellus, $\mathrm{D} \rightarrow$ Micropyle
(C) A \rightarrow Hilum, $\mathrm{B} \rightarrow$ Outer integument,
$\mathrm{C} \rightarrow$ Embryosac, $\mathrm{D} \rightarrow$ Micropyle
(D) None of these
55. A child of O blood group, has B-blood group father, the genotype of father would be :
(A) $\mathrm{I}^{\circ} \mathrm{I}^{\mathrm{O}}$
(B) $\mathrm{I}^{B} I^{B}$
(C) $I^{A} I^{B}$
(D) $I^{B} I^{0}$
56. गुरूबीजाणुधानी किसके समतुल्य है :
(A) फल के
(B) बीजाण्ड काय के
(C) बीजाण्ड के
(D) भूण कोष के
57. शुक्राणु के निर्माण का सही क्रम है ?
(A) शुक्राणुजन, शुक्र कोशिका, शुक्राणु, शुक्राणुप्रसू
(B) शुक्राणुजन, शुक्राणु, शुक्र कोशिका, शुक्राणुप्रसू
(C) शुक्राणुजन, शुक्र कोशिका, शुक्राणुप्रसू, शुक्राणु
(D) शुक्राणुप्रसू, शुक्र कोशिका, शुक्राणुजन, शुक्राणु
58. दिया गया चित्र एक प्ररूपी प्रत्तीय बीजाण्ड को दर्शाता हैं, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और D क्या दर्शाते हैं :

(A) $\mathrm{A} \rightarrow$ नाभिका, $\mathrm{B} \rightarrow$ बीजाण्डवृंत,
$\mathrm{C} \rightarrow$ बीजाण्डकाय, $\mathrm{D} \rightarrow$ बीजाण्डद्वार
(B) $\mathrm{A} \rightarrow$ नाभिका, $\mathrm{B} \rightarrow$ बाह्य अध्यावरण,
$\mathrm{C} \rightarrow$ बीजाण्डकाय, $\mathrm{D} \rightarrow$ बीजाण्डद्वार
(C) $\mathrm{A} \rightarrow$ नाभिका, $\mathrm{B} \rightarrow$ बाह्य अध्यावरण,
$\mathrm{C} \rightarrow$ भूणकोष, $\mathrm{D} \rightarrow$ बीजाण्डद्वार
(D) इनमें से कोई नहीं
59. O रूधिर समूह वाले एक बच्चे के पिता का B रूधिर समूह है तो पिता का जीन प्ररूप होगा :
(A) $I^{0} I^{0}$
(B) $\mathrm{I}^{B \mathrm{I}} \mathrm{I}^{\mathrm{B}}$
(C) $I^{A} I^{B}$
(D) $I^{B} I^{0}$

Space for rough work

56. How many types of genotypes are found in F_{2} generation of dihybrid cross?
(A) 4
(B) 16
(C) 8
(D) 9
57. Given pedigree represents inheritance of myotonic dystrophy which is an autosomal dominant disorder. What will be genotype of parents :

(A) Mother - aa Father - AA
(B) Mother - AA Father - aa
(C) Mother - Aa Father - aa
(D) Mother - aa Father - aa
58. In eukaryotic cell transcription, RNA splicing and RNA capping take place inside the :
(A) Ribosomes
(B) Nucleus
(C) Dictyosomes
(D) ER
59. Back bone in structure of DNA molecule is made up of:
(A) Pentose Sugar and phosphate
(B) Hexose sugar and phosphate
(C) Purine and pyrimidine
(D) N-base and phosphate
60. Which of the following represents the polarity of template strand in a replication fork ?
(A) $3^{\prime} \rightarrow 5^{\prime}$
(B) $5^{\prime} \rightarrow 3^{\prime}$
(C) Both (A) and (B)
(D) None of these
61. द्विसंकर क्रॉस (Dihybrid cross) की F_{2} पीढ़ी में जीनप्ररूपों (Genotypes) कितने प्रकार के होते हैं ?
(A) 4
(B) 16
(C) 8
(D) 9
62. दिया गया वंशावली (Pedigree) आरेख मायोटोनिक डिस्ट्रोफी की वंशागति को प्रदर्शित करता है, जो कि एक ऑटोसोमल प्रभावी विकार है। इसमें पैतृकों का जीनप्रारूप (Genotype) क्या रहा होगा :

(A) माता - aa पिता - AA
(B) माता- AA पिता - aa
(C) माता - Aa पिता- aa
(D) माता - aa पिता - aa
63. यूकैरियोटिक कोशिका के अनुलेखन में RNA समबन्धन तथा RNA कैपिंग किसके अन्दर सम्पन्न होते हैं :
(A) राइबोसोम
(B) केन्द्रक
(C) डिक्टियोसोम
(D) ER
64. DNA अणु की संरचना में इसकी रीढ़ (Back bone) बनती हैं:
(A) पेन्टोज शर्करा तथा फॉस्फेट से
(B) हेक्सोज शर्करा तथा फॉस्फेट से
(C) प्यूरीन तथा पिरिमिडीन से
(D) N -क्षार तथा फॉस्फेट से
65. निम्नलिखित में से कौन सा प्रतिकृति फोर्क में टेम्पलेट रज्जु की ध्रुवीयता का प्रतिनिधित्व करता है :
(A) $3^{\prime} \rightarrow 5^{\prime}$
(B) $5^{\prime} \rightarrow 3^{\prime}$
(C) (A) तथा (B) दोनों
(D) इनमें से कोई नहीं

Space for rough work

PART III : MATHEMATICS

This section contains 20 Multiple Choice Questions (Q:41 to Q:60). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
41. If $\left|\begin{array}{ccc}\sec x & \sin x & \tan x \\ 0 & \lambda & 0 \\ \tan x & \cot x & \sec x\end{array}\right|=2$, then the value of λ is:
(A) 0
(B) 1
(C) -1
(D) 2
42. $\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)$ is equal to :
(A) π
(B) $-\frac{\pi}{3}$
(C) $\frac{\pi}{3}$
(D) $\frac{2 \pi}{3}$
43. The relation R is defined on the set of natural numbers as $\{(a, b): a=2 b\}$. Then R^{-1} is given byl:
(A) $\{(2,1),(4,2),(6,3), \ldots . .)$.
(B) $\{(1,2),(2,4),(3,6), \ldots$.
(C) R^{-1} is not defined
(D) None of these
44. The slope of the curve $y=\sin x+\cos ^{2} x$ is zero at the point :
(A) $x=\frac{\pi}{4}$
(B) $\mathrm{x}=\frac{\pi}{2}$
(C) $x=\pi$
(D) $x=2 \pi$
45. The value of the determinant $\left|\begin{array}{ccc}\frac{1}{a} & 1 & \mathrm{bc} \\ \frac{1}{b} & 1 & \mathrm{ca} \\ \frac{1}{c} & 1 & \mathrm{ab}\end{array}\right|$ is equal to :
41. यदि $\left|\begin{array}{ccc}\sec x & \sin x & \tan x \\ 0 & \lambda & 0 \\ \tan x & \cot x & \sec x\end{array}\right|=2$ तब λ का मान होगा :
(A) 0
(B) 1
(C) -1
(D) 2
42. $\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)$ बराबर होगा :
(A) π
(B) $-\frac{\pi}{3}$
(C) $\frac{\pi}{3}$
(D) $\frac{2 \pi}{3}$
43. संबध R प्राकृत संख्याओं के समुच्चय पर इस प्रकार परिभाषित $\{(\mathrm{a}, \mathrm{b}): \mathrm{a}=2 \mathrm{~b}\}$ है, तब R^{-1} होगा :
(A) $\{(2,1),(4,2),(6,3), \ldots . .)$.
(B) $\{(1,2),(2,4),(3,6), \ldots$.
(C) R^{-1} परिभाषित नहीं है
(D) इनमें से कोई नहीं
44. निम्न में से किस बिन्दु पर वक्र $y=\sin x+\cos ^{2} x$ का ढ़ाल शुन्य होगा :
(A) $x=\frac{\pi}{4}$
(B) $\mathrm{x}=\frac{\pi}{2}$
(C) $x=\pi$
(D) $x=2 \pi$
45. सारणिक $\left|\begin{array}{lll}\frac{1}{\mathrm{a}} & 1 & \mathrm{bc} \\ \frac{1}{\mathrm{~b}} & 1 & \mathrm{ca} \\ \frac{1}{\mathrm{c}} & 1 & \mathrm{ab}\end{array}\right|$ का मान बराबर होगा :

Space for rough work
(A) abc
(B) $\frac{1}{\mathrm{abc}}$
(C) 0
(D) 1
46. $f(x)=\left\{\begin{array}{cl}a x^{2}+b x+c, & x \leq 0 \\ x^{3} \sin \frac{1}{x}, & x>0\end{array}\right.$.IF $f(x)$ is continuous and differentiable at $\mathrm{x}=0$ then the value of $b+c$ is :
(A) -1
(B) 1
(C) 0
(D) 2
47. The inverse of matrix $\left[\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right]$ is :
(A) $\left[\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right]$
(B) $\left[\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right]$
(C) $\left[\begin{array}{cc}-2 & 7 \\ 1 & -4\end{array}\right]$
(D) $\left[\begin{array}{cc}-2 & 1 \\ 7 & -4\end{array}\right]$
48. The range of the function $\mathrm{f}(\mathrm{x})=\sqrt{2-\mathrm{x}}+\sqrt{1+\mathrm{x}}$ is :
(A) $[\sqrt{3}, \sqrt{6}]$
(B) $[\sqrt{3}, \sqrt{7}]$
(C) $[\sqrt{2}, \sqrt{6}]$
(D) $[\sqrt{2}, \sqrt{7}]$
49. If $f(x)=\left\{\begin{array}{cc}\frac{x^{2}}{|x|} & x \neq 0 \\ 0 & x=0\end{array}\right.$, then which of the following statement is true?
(A) $f(x)$ is discontinuous everywhere
(B) $f(x)$ is continuous everywhere
(C) $\mathrm{f}^{\prime}(\mathrm{x})$ exists in $(-1,1)$
(D) $\mathrm{f}^{\prime}(\mathrm{x})$ exists in $(-2,2)$
(A) abc
(B) $\frac{1}{\mathrm{abc}}$
(C) 0
(D) 1
46. $f(x)=\left\{\begin{array}{cl}a x^{2}+b x+c, & x \leq 0 \\ x^{3} \sin \frac{1}{x}, & x>0\end{array}\right.$ यदि $f(x), x=0$ पर सतत तथा अवकलनीय है तो $\mathrm{b}+\mathrm{c}$ का मान होगा :
(A) -1
(B) 1
(C) 0
(D) 2
47. आव्यूह $\left[\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right]$ का प्रतिलोम आव्यूह होगा :
(A) $\left[\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right]$
(B) $\left[\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right]$
(C) $\left[\begin{array}{cc}-2 & 7 \\ 1 & -4\end{array}\right]$
(D) $\left[\begin{array}{cc}-2 & 1 \\ 7 & -4\end{array}\right]$
48. फलन $f(x)=\sqrt{2-x}+\sqrt{1+x}$ का परिसर होगा :
(A) $[\sqrt{3}, \sqrt{6}]$
(B) $[\sqrt{3}, \sqrt{7}]$
(C) $[\sqrt{2}, \sqrt{6}]$
(D) $[\sqrt{2}, \sqrt{7}]$
49. यदि $f(x)=\left\{\begin{array}{cl}\frac{\mathrm{x}^{2}}{|\mathrm{x}|} & \mathrm{x} \neq 0 \\ 0 & \mathrm{x}=0\end{array}\right.$ तब निम्नलिखित में से कौनसा कथन सत्य है ?
(A) $f(x)$ सर्वत्र असतत् है
(B) $\mathrm{f}(\mathrm{x})$ सर्वत्र सतत् है
(C) $\mathrm{f}^{\prime}(\mathrm{x}),(-1,1)$ में विद्यमान है
(D) $\mathrm{f}^{\prime}(\mathrm{x}),(-2,2)$ में विद्यमान है
50. $\left|\begin{array}{ccc}1+\mathrm{i} & 1-\mathrm{i} & \mathrm{i} \\ 1-\mathrm{i} & \mathrm{i} & 1+\mathrm{i} \\ \mathrm{i} & 1+\mathrm{i} & 1-\mathrm{i}\end{array}\right|$ (where $\mathrm{i}=\sqrt{-1}$) is equal
to :
(A) $7+4 \mathrm{i}$
(B) $7-4 \mathrm{i}$
(C) $4+7 i$
(D) $4-7 \mathrm{i}$
51. For any 2×2 square matrix A, A. $(\operatorname{adj} A)=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$, then $|A|$ equals to :
(A) 0
(B) 3
(C) 6
(D) 9
52. The equation of normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ at the point $(a, 0)$ is :
(A) $x=a$
(B) $x=-a$
(C) $y=a$
(D) $y=-a$
53. The interval in which the function $f(x)=x e^{4 x}$ decreases is
(A) $(-\infty, 1)$
(B) $(1, \infty)$
(C) $(0,4)$
(D) $(0,6)$
54. In a $\triangle \mathrm{ABC}$ if $\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{c} & \mathrm{a} & \mathrm{b} \\ 1 & 1 & 1\end{array}\right|=0$.

Then $\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}$ is equal to :
(A) $\frac{3}{4}$
(B) $\frac{3}{2}$
(C) $\frac{9}{4}$
(D) 1
55. Value of $\cos \left(2 \tan ^{-1} 2\right)$ is :
(A) $\frac{3}{5}$
(B) $\frac{3}{4}$
(C) $-\frac{3}{5}$
(D) $-\frac{3}{4}$
50. $\left|\begin{array}{ccc}1+\mathrm{i} & 1-\mathrm{i} & \mathrm{i} \\ 1-\mathrm{i} & \mathrm{i} & 1+\mathrm{i} \\ \mathrm{i} & 1+\mathrm{i} & 1-\mathrm{i}\end{array}\right|$ (जहाँ $\mathrm{i}=\sqrt{-1}$) का मान होगा :
(A) $7+4 \mathrm{i}$
(B) $7-4 \mathrm{i}$
(C) $4+7 \mathrm{i}$
(D) $4-7 \mathrm{i}$
51. किसी 2×2 कोटि के वर्ग आव्यूह के लिए यदि A. $(\operatorname{adjA})=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ तब $|\mathrm{A}|$ का मान होगा :
(A) 0
(B) 3
(C) 6
(D) 9
52. वक्र $\mathrm{x}^{\frac{2}{3}}+\mathrm{y}^{\frac{2}{3}}=\mathrm{a}^{\frac{2}{3}}$ के बिन्दु $(\mathrm{a}, 0)$ पर अभिलम्ब का समीकरण निम्न होगा :
(A) $x=a$
(B) $x=-a$
(C) $y=a$
(D) $y=-a$
53. फलन $\mathrm{f}(\mathrm{x})=\mathrm{xe}^{4 \mathrm{x}}$ निम्न में से किस अन्तराल में ह्वासमान होगा
(A) $(-\infty, 1)$
(B) $(1, \infty)$
(C) $(0,4)$
(D) $(0,6)$
54. $\triangle \mathrm{ABC}$ में यदि $\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{c} & \mathrm{a} & \mathrm{b} \\ 1 & 1 & 1\end{array}\right|=0$ तब $\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}$ का मान होगा :
(A) $\frac{3}{4}$
(B) $\frac{3}{2}$
(C) $\frac{9}{4}$
(D) 1
55. $\cos \left(2 \tan ^{-1} 2\right)$ का मान होगा :
(A) $\frac{3}{5}$
(B) $\frac{3}{4}$
(C) $-\frac{3}{5}$
(D) $-\frac{3}{4}$

Space for rough work
56. Find number of reflexive relation from A to A defined as $\mathrm{A}=\{1,2,3\}$:
(A) 64
(B) 256
(C) 128
(D) 512
57. The function $f(x)=|\cos x|$ is
(A) everywhere continuous \& differentiable
(B) everywhere continuous but not differen-
tiable at $(2 \mathrm{n}+1) \frac{\pi}{2} ; \mathrm{n} \in \mathrm{I}$
(C) Neither continuous nor differentiable at
$(2 \mathrm{n}+1) \frac{\pi}{2} ; \mathrm{n} \in \mathrm{I}$
(D) None
58. The angle of intersection between the curve y^{2} $=16 \mathrm{x}$ and $2 \mathrm{x}^{2}+\mathrm{y}^{2}=4$ is :
(A) 0°
(B) 45°
(C) 30°
(D) 90°
59. The domain of the function $f(x)=\frac{\cos ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ is :
(A) $[1,2]$
(B) $[2,3)$
(C) $[2,3]$
(D) $[1,2)$
60. If graph of $f(x)=|\log | x \|$ is :
(A)

(B)

(C)

(D)

56. $\mathrm{A}=\{1,2,3\}$ समुच्चय A से A में परिभाषित स्वतुल्य संबधो की संख्या होगी :
(A) 64
(B) 256
(C) 128
(D) 512
57. फलन $f(x)=|\cos x|$ है
(A) सर्वत्र सतत् तथा अवकलनीय है
(B) सर्वत्र सतत् परन्तु $(2 \mathrm{n}+1) \frac{\pi}{2} ; \mathrm{n} \in \mathrm{I}$ पर अवकलनीय नहीं है
(C) $(2 \mathrm{n}+1) \frac{\pi}{2} ; \mathrm{n} \in \mathrm{I}$ पर ना तो अवकलनीय है और ना ही सतत् है
(D) कोई नहीं
58. वक्रो $y^{2}=16 x$ तथा $2 x^{2}+y^{2}=4$ के मध्य प्रतिच्छेदन कोण होगा :
(A) 0°
(B) 45°
(C) 30°
(D) 90°
59. फलन $f(x)=\frac{\cos ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ का प्रान्त है :
(A) $[1,2]$
(B) $[2,3)$
(C) $[2,3]$
(D) $[1,2)$
60. फलन $\mathrm{f}(\mathrm{x})=|\log | \mathrm{x}| |$ का ग्राफ है
(A)

(B)

(C)

(D)

Space for rough work

