

CSR Initiative of Matrix Education, Sikar to motivate and reward young talent.

✓ Total Questions : 60

🗹 Maximum Marks : 240

✓ Duration : 2 Hrs.

	PAPER PA	TTERN	
Part	(I) Physics	(II) Chemistry	(III) Biology or Maths
Number of Questions	20	20	20

Marking Scheme: +4 For Correct Answer (One mark will be deducted for wrong answer)

Instructions :

PAPER

CODE

- 1. This Booklet is your **Question Paper.** DO NOT **break seal** of Booklet until the invigilator instructs to do so.
- 2. The Answer Sheet is provided to you separately which is a machine readable Optical Response Sheet (ORS). You have to mark your answer in the ORS by darkening bubble, as per your answer choice , by using **Black** /**Blue** ball point pen only.
- 3. If you are found involved in **cheating** or disturbing others then your ORS will be cancelled.
- 4. Do not **damage** the ORS sheet in any manner. If ORS is damaged or not completed properly, your results will not be prepared.
- 5. If you have any **confusion** in filling-up ORS sheet, please **contact** your invigilator. Incomplete ORS will be not be evaluated.
- 6. You can take the question paper home once the ORS is submitted.

MATRIX: Where producing outstanding results is a habit!

*cumulative result so far

Remarkable result growth in both JEE Main & Advanced on a consistent basis

Note : All results are from Matrix year long classroom program at Sikar only.

"Authenticity of result, promise of Matrix"

Total students qualified in JEE Main

6/00+ students have been qualified in JEE main from matrix till date.

2500+ students have qualified JEE Advanced till date – Highest in Sikar

2000+ final admissions in various top IITs over last 5 years – Highest in Sikar

3500+ selection in NIT/IIITs and other or other Prestigious Universities Highest in Sikar

HIGHLIGHTS at MATRIX

Class-XI (Shift-II)

PART I : PHYSICS

This section contains 20 Multiple Choice Questions (Q : 01 to Q : 20). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

- 1. The speed of a wave produced in water is given by $v = \lambda^a g^b \rho^c$. Where λ , g and ρ are wavelength of wave, acceleration due to gravity and density of water respectively. The values of a, b and c respectively, are :
 - (A) $\frac{1}{2}, \frac{1}{2}, 0$ (B) $\frac{1}{2}, 0, \frac{1}{2}$ (C) 1, -1, 0 (D) 1, 1, 0
- 2. If momentum (P), area (A) and time (T) are taken to be the fundamental quantities then the dimensional formula for energy is :
 - (A) $[PA^{-1}T^{-2}]$ (B) $\left[PA^{\frac{1}{2}}T^{-1}\right]$ (C) $\left[P^{\frac{1}{2}}AT^{-1}\right]$ (D) $[P^{2}AT^{-2}]$

 पानी में उत्पन्न तरंग की गति υ = λ^ag^bρ^c जहाँ λ, g
 और ρ है तरंग की तरंगदैर्ध्य, गुरूत्वाकर्षण के कारण त्वरण और पानी का घनत्व क्रमशः a, b और c के मान होगे :

(A)
$$\frac{1}{2}, \frac{1}{2}, 0$$

(B) $\frac{1}{2}, 0, \frac{1}{2}$
(C) 1, -1, 0
(D) 1, 1, 0

 यदि संवेग (P), क्षेत्रफल (A) और समय (T) को मूल इकाई माना जाये तो ऊर्जा की विमाएँ होगी :

(A)
$$[PA^{-1}T^{-2}]$$

(B) $\left[PA^{\frac{1}{2}}T^{-1}\right]$
(C) $\left[P^{\frac{1}{2}}AT^{-1}\right]$
(D) $[P^{2}AT^{-2}]$

Space for rough work

***** D11291023 *****

3. The position-time graphs for two students A and B returning from the school to their homes are shown in figure.

A. A lives closer to the school

- B. B lives closer to the school
- C. A takes lesser time to reach home
- D. A travels faster than B
- E. B travels faster than A

Choose the correct answer from the options given below :

(A) A, C and D only

- (B) B and E only
- (C) A and E only
- (D) A, C and E only
- 4. As shown in the figure, a particle is moving with constant speed π m/s. Considering its motion from A to B, the magnitude of the average velocity is:

विद्यालय से अपने– अपने घर लौटते हुए दो छात्रें A एवं
 B का स्थिति–समय अभिरेख चित्र में दर्शाया गया है।

A. A विद्यालय के पास रहता है। B. B विद्यालय के पास रहता है। C. A को घर पहुंचने में कम समय लगता है। D. A, B की तुलना में तेज चलता है। E. B, A की तुलना में तेज चलता है। नीचे दिए गए विकल्पों में से सही उत्तर चुनेः

- (A) केवल A, C एवं D
- (B) केवल B एवं E
- (C) केवल A एवं E
- (D) केवल A, C एवं E
- प्रदर्शित चित्र में, एक कण नियत चाल $\pi \,\, {
 m m/s}$ से गति करता है। बिन्दु A से B तक की गति के लिए इसके औसत वेग का परिमाण है :

Space for rough work

***** D11291023 *****

4.

- (A) $1.5\sqrt{3} m / s$ (B) $\pi m / s$
- (C) $2\sqrt{3} m/s$
- (D) $\sqrt{3} m / s$
- 5. A particle when projected vertically upwards from ground, takes time T to reach the maximum height H. If the particle crosses a point at height

$$\frac{7H}{16}$$
 at time t_1 and t_2 then the ratio $\frac{t_1}{t_2}$ is :-

(A)
$$\frac{1}{7}$$

(B) $\frac{1}{8}$
(C) $\frac{1}{16}$
(D) $\frac{5}{16}$

Two trains 'A' and 'B' of length ' l ' and '4 l ' are travelling into a tunnel of length 'L' in parallel tracks from opposite directions with velocities 108 km/h and 72 km/h, respectively. If train 'A' takes 35s less time than train 'B' to cross the tunnel then, length 'L' of tunnel is :

(Given L = 60ℓ)

- (A) 2700 m (B) 1200 m
- (C) 900 m
- (D) 1800 m

(A) $1.5\sqrt{3} m/s$ (B) $\pi m/s$ (C) $2\sqrt{3} m/s$ (D) $\sqrt{3} m/s$

5.

- जब एक कण को जमीन से उर्ध्वाधर उपर की ओर प्रक्षेपित किया जाता है, अधिकतम ऊँचाई H तक पहुँचने में T समय लगता है। यदि कण $\frac{7H}{16}$ ऊँचाई को t_1 तथा t_2 समय पर पार करता है, तो अनुपात $\frac{t_1}{t_2}$ है :-
 - (A) $\frac{1}{7}$ (B) $\frac{1}{8}$ (C) $\frac{1}{16}$ (D) $\frac{5}{16}$
- 'ℓ' एवं '4ℓ' लम्बाई वाली दो ट्रेनें A एवं B, 'L' लम्बाई की सुरंग (टनल) में समानान्तर पथों पर एक–दूसरे के विपरित दिशाओं में क्रमशः 108 km/h एवं 72 km/h के वेग से चल रही है। यदि सुरंग को पार करने में ट्रेन A को, ट्रेन B से 35 सेकण्ड कम का समय लगता है, तो सुरंग की लम्बाई 'L' है (दिया है, L = 60ℓ) (A) 2700 m (B) 1200 m (C) 900 m (D) 1800 m

Space for rough work

***** D11291023 *****

6.

7. A shot is fired at an angle θ to the horizontal such that it strikes the hill while moving horizontally. Find initial angle of projection θ .

- (C) $\tan \theta = \frac{3}{2}$
- (D) None of these
- 8. In a football game, a player wants to hit a football from the ground to one of his teammates, who is running on the field. Take hitter position as origin & receiver's initial position as $2\hat{i} + 3\hat{j}$, where $\hat{i} & \hat{j}$ are in the plane of field. Football's initial velocity vector is $2\hat{i} + 5\hat{j} + 25\hat{k} &$ in the subsequent run receiver's displacement is $5\hat{i} + 8\hat{j}$, then $2\hat{i} +$ $4\hat{j}$ & then $6\hat{j}$. How far is the receiver from the football when football lands on ground ? (assume $\vec{g} = -10\hat{k}$) (A) $\sqrt{10}$
 - (B) $\sqrt{17}$
 - (C) $\sqrt{26}$
 - (D) $\sqrt{13}$

 एक गोले को क्षैतिज से θ कोण पर इस प्रकार दागा जाता है कि यह क्षैतिज रूप से गति करते हुए पहाड़ी से टकराता है। प्रारम्भिक प्रक्षेपण कोण θ का मान है:-

पुटबॉल के खेल में एक खिलाड़ी फुटबॉल को धरातल से उसके किसी एक साथी खिलाड़ी की ओर किक मारना चाहता है, जो कि मैदान पर दौड़ रहा है। गेंद पर प्रहार की स्थिति मूलबिन्दु पर तथा गेंद पकड़ने वाले खिलाड़ी की प्रारम्भिक स्थिति $2\hat{i} + 3\hat{j}$ पर मानिये, जहाँ \hat{i} तथा \hat{j} मैदान के तल में है। फुटबॉल का प्रारम्भिक वेग सदिश $2\hat{i} + 5\hat{j} + 25\hat{k}$ है तथा तदोपरान्त दौड़ने में गेंद पकड़ने वाले का विस्थापन $5\hat{i} + 8\hat{j}$ फिर $2\hat{i} + 4\hat{j}$; तथा फिर $6\hat{j}$ है। जब फुटबॉल धरातल पर गिरती है तो गेंद पकड़ने वाले खिलाड़ी की फुटबॉल से दूरी है?

- (माना $\vec{g} = -10 \hat{k}$)
- (A) $\sqrt{10}$
- (B) $\sqrt{17}$

8.

***** D11291023 *****

Space for rough work

- (C) $\sqrt{26}$
- (D) $\sqrt{13}$

201022

the same point : one, straight up and the other, at an angle of $\theta = 30^{\circ}$ to the horizontal. The initial velocity of each body is equal to $v_0 = 25$ m /sec. Find the distance (in meter) between the bodies t = 1 sec later.

(B) 12.5
(C)
$$\frac{25\sqrt{3}}{2}$$

- (D) 20
- 10. Two particles are interconnected by an ideal spring (see figure). The spring is compressed and system is projected in air under gravity. If the acceleration of m_1 is $\vec{\alpha}$, the acceleration of m_2 is :

Space for rough work

***** D11291023 *****

9. दो वस्तुओं को एकसाथ एक ही बिन्दु से फेंका जाता है: एक वस्तु को ऊर्ध्वाधर ऊपर की ओर तथा दूसरी को क्षैतिज से θ=30° कोण पर। दोनों वस्तुओं का प्रारम्भिक वेग v₀ = 25 m/sec है।t = 1 sec बाद दोनों वस्तुओं के बीच दूरी (मीटर में) ज्ञात करो।

(A) 25
(B) 12.5
(C)
$$\frac{25\sqrt{3}}{2}$$

(D) 20

10. दो कण एक आदर्श स्प्रिंग द्वारा चित्रानुसार एक-दूसरे से जुड़े हुये है। स्प्रिंग को संपीड़ित करके निकाय को वायु में गुरूत्व के अधीन प्रक्षेपित किया जाता है। यदि m₁ का त्वरण \u03c6 है तो m₂ का त्वरण होगा :

D11 291 023

Class-XI (Shift-II)

11. Two blocks of mass 10 kg and 2 kg respectively are connected by an ideal string passing over a fixed smooth pulley as shown in figure. A monkey of 8 kg started climbing the string with constant acceleration $2ms^{-2}$ with respect to string at t = 0. Initially the monkey is 2.4 m from the pulley. Find the time taken by the monkey to reach the pulley.

- (A) 1 sec
- (B) 2 sec
- (C) 4 sec
- (D) 8 sec
- 12. The system is in equilibrium with applied force F as shown. At t = 0 F is removed. Initial aceleration of 2m block will be :-

11. चित्रानुसार एक स्थिर चिकनी घिरनी पर से होकर गुजर रही आदर्श रस्सी से क्रमशः 10 kg व 2 kg द्रव्यमान के दो ब्लॉक जुड़े हुए हैं। एक 8 kg का बंदर t = 0 पर रस्सी के सापेक्ष 2 ms⁻² नियत त्वरण से रस्सी पर चढ़ना प्रारम्भ करता है। प्रारम्भ में बंदर घिरनी से 2.4 m दूर है। बंदर को घिरनी तक पहुँचने में लगा समय होगा –

- (A) 1 sec
- (B) 2 sec
- (C) 4 sec
- (D) 8 sec
- 12. दिखाए गए अनुसार निकाय लागू बल F के साथ साम्यावस्था में है। t = 0 पर F हटा दिया जाता है। 2m ब्लॉक का प्रारंभिक त्वरण होगा–

Space for rough work

***** D11291023 *****

Class-XI (Shift-II)

13. ABCD is a smooth plank placed in horizontal xy-plane. A small body of mass m is connected to a string which is connected to point P of plank. Initially plank and body both are at rest. Now an acceleration of $3\hat{i} + 4\hat{j} \text{ m/s}^2$ is given to plank. Find angle made by string with its initial direction when net force on body is along the string as seen from the frame of the plank.

14. A circular rope of weight 'W' and radius $r = \frac{3R}{5}$ is resting on a smooth sphere of radius

. The tension in the rope is

13. चित्र में ABCD एक घर्षण रहित तख्ता है जो क्षैतिज xy-समतल में स्थित है।m द्रव्यमान का एक छोटा पिण्ड एक डोरी द्वारा तख्ते से बिन्दु P से बंधा हुआ है। प्रारम्भ में तख्ता तथा पिण्ड दोनों विराम अवस्था में है। अब तख्ते को एक त्वरण 3î + 4ĵ m/s² प्रदान किया जाता है। डोरी द्वारा अपनी प्रारंभिक दिशा से बनाया गया कोण उस समय ज्ञात कीजिए जब तख्ते की फ्रेम से देखने पर पिण्ड पर कुल बल डोरी के अनुदिश हो।

14. भार 'W' तथा त्रिज्या $r = \frac{3R}{5}$ वाली एक वृत्ताकार रस्सी R त्रिज्या वाले चिकने गोले पर विरामावस्था में रखी है। रस्सी में उत्पन्न तनाव हैः

Space for rough work

***** D11291023 *****

15. The ratio of powers of two motors is, $\frac{3\sqrt{x}}{\sqrt{x}+1}$ that are capable of raising 300 kg Water in 5 minutes and 50 kg water in 2 minutes respectively from a well of 100 m deep. The value of x will be :

(A) 2·4	(B) 4
(C) 2	(D) 16

What minimum speed does a 100 g particle need at point B to reach point A? The graph shows potential energy versus position.

17. A particle is attached to the lower end of a uniform rod which is hinged at its other end as shown in the figure. Another identical particle moving horizontally, collides inelastically and sticks to it. The minimum speed of moving particle so that the rod with particles performs circular motion in a vertical plane will be : [length of the rod is ℓ , consider masses of both particles and rod to be same]

15. दो मोटरों की शक्तियों का अनुपात $\frac{3\sqrt{x}}{\sqrt{x}+1}$ है, जो कि

क्रमशः 5 मिनट एवं 2 मिनट में क्रमशः 300 kg एवं 50 kg पानी को 100 m मीटर गहरे कुऐं से उठाने में सक्षम हैं। x का मान होगा–

(A)
$$2 \cdot 4$$
 (B) 4
(C) 2 (D) 16

16. किसी 100g के कण को बिन्दु B पर कितनी न्यूनतम चाल दी जाए ताकि यह बिन्दु A तक पहुँच सके जबकि इसका स्थितिज ऊर्जा–स्थिति आरेख चित्रानुसार प्राप्त होता है ?

- (A) $\sqrt{40}$ m/s (B) $\sqrt{60}$ m/s (C) 10 m/s (D) 5 m/s
- 17. किसी समरूप छड़ के निकले सिरे से एक कण को जोड़ा जाता है तथा छड़ का दूसरा सिरा चित्रानुसार कीलकीत है। क्षैतिज रूप से गतिशील इसके जैसा दूसरा कण इससे अप्रत्यास्थ रूप से टकराकर चिपक जाता है। गतिशील कण की न्यूनतम चाल क्या होनी चाहिए ताकि कण सहित यह छड़ एक ऊर्ध्वाधर तल में वृत्तीय गति पूर्ण कर सके ? [छड़ की लम्बाई l है तथा दोनों कणों व छड़ का द्रव्यमान समान मानें]

Space for rough work

***** D11291023 *****

D11 291 023

18. A block A is placed over block B having mass m & 2m respectively. Block B is resting on a frictionless surface and there is friction between block A and B. The system of blocks is pushed towards a spring with a velocity v_0 such that A doesn't slip on B by the time the system comes to momentary rest. The correct statement is :-

- (A) Work done by friction on A is zero
- (B) Work done by friction on B is $-\frac{1}{2}mv_0^2$
- (C) Work done by spring on B is $-\frac{3}{2}mv_0^2$
- (D) Work done by friction on A & B is zero

18.

***** D11291023 *****

प्रदर्शित चित्र में ब्लॉक A, ब्लॉक B के ऊपर रखा हुआ है तथा इनके द्रव्यमान क्रमशः m व 2m है। ब्लॉक B घर्षण रहित सतह पर स्थित है तथा ब्लॉक A व B के मध्य घर्षण विद्यमान है। ब्लॉकों के निकाय को एक स्प्रिंग की ओर v₀ वेग से इस प्रकार धकेला जाता है कि निकाय द्वारा क्षणिक रूप से विरामावस्था में आने तक A, B पर नही फिसलता है। सही कथन चुनिये :--

Space for rough work

Class-XI (Shift-II)

19. A block starts from rest at the top of frictionless slide at a height, h_1 above the ground. The block leaves the slide moving perfectly horizontally at a height h_2 above the ground. The block eventually hits the ground travelling at an angle $\theta = 30^\circ$ below the horizontal. Then

- (A) $2h_1 = h_2$
- (B) $h_1 = 2h_2$
- (C) $4h_1 = h_2$
- (D) $h_1 = 4h_2$

20. A body of mass 10 kg placed on rough surface is pushed by force F making an angle $0f 30^{\circ}$ to the horizontal. If the angle of friction is also 30° then the magnitude of force F required to move the body is equal to (g = 10 m/s²)

(D) 50 N

19. एक ब्लॉक धरातल से h₁ ऊँचाई पर एक घर्षणरहित फिसलपट्टी के शीर्ष से विरामावस्था से गति करना प्रारम्भ करता है। ब्लॉक पूर्णतया क्षैतिज रूप से गति करते हुए ध ारातल से h₂ ऊँचाई पर इस फिसलपट्टी को छोड़ता है। ब्लॉक अंत में क्षैतिज से θ = 30° कोण नीचे गति करते हुए धरातल से टकराता है। तब :-

- (A) $2h_1 = h_2$
- (B) $h_1 = 2h_2$ (C) 4h = h

(C)
$$\Pi_1 \quad \Pi_2$$

(D) $\Pi_1 = 41$

(D) $h_1 = 4h_2$

किसी खुरदरी सतह पर रखे 10 kg द्रव्यमान वाले एक पिण्ड को क्षैतिज से 30° कोण बना रहे बल F द्वारा धकेला जाता है। यदि घर्षण कोण भी 30° है तो पिण्ड को गति कराने के लिए आवश्यक बल F का परिमाण है :—

 $(g = 10 \text{ m/s}^2)$

Space for rough work

***** D11291023 *****

20.

PART II : CHEMISTRY

Class-XI (Shift-II)

This section contains 20 Multiple Choice Questions (Q : 21 to Q : 40). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

21.	According to the equat	tion	21.	दिए गए समीकरण	
	$4\mathrm{NH}_3(\mathrm{g}) + 5\mathrm{O}_2(\mathrm{g}) \rightarrow$	$4\text{NO}(g) + 6\text{H}_2\text{O}(l)$		$4\mathrm{NH}_3(\mathrm{g}) + 5\mathrm{O}_2(\mathrm{g}) \rightarrow$	$4NO(g) + 6H_2O(l)$
	When 1 mole of O_2 and	d 1 mole of ammonia are		अनुसार जब $\mathrm{O}_{_2}$ के 1 मोल	और अमोनिया के 1 मोल को
	mixed, then			मिश्रित किया जाता है, तब	
	(A) 0.2 mole of H_2Oi	s produced		(A) H ₂ O के 0.2 मोल क	ग उत्पादन होता है।
	(B) 0.1 mole of NO is	produced		(B) NO के 0.1 मोल का	उत्पादन होता है।
	(C) All the oxygen will	l be consumed		(C) सम्पूर्ण ऑक्सीजन क	ा उपयोग हो जाएगा।
	(D) All the ammonia w	vill be consumed in order		(D) 1 मोल NO निर्मित व	न्रने के लिए सम्पूर्ण अमोनिया
	to form 1 mole NO)		का उपयोग हो जाएग	ΠΙ
22.	Example of isodiapher	rs is ?	* 22.	आइसोडायपर का उदाहर	ण है ?
	(A) ${}^{12}_{6}$ C ${}^{14}_{6}$ C	(B) ${}^{14}_{6}$ C ${}^{14}_{7}$ C	* * *	(A) ${}^{12}_{6}$ C ${}^{14}_{6}$ C	(B) ${}^{14}_{6}$ C ${}^{14}_{7}$ C
	(C) $\frac{238}{92}$ U $\frac{234}{90}$ Th	(D) ${}^{1}_{1}P {}^{2}_{1}D$	53. 23. 23.	(C) ${}^{238}_{92}$ U ${}^{234}_{90}$ Th	(D) ${}^{1}_{1}P {}^{2}_{1}D$
23.	The first ionizaton entl	napies of Be, B, N and O	67 23.	Be, B, N एवं O की प्र	थम आयनन एन्थैल्पियाँ जिस
	follow the order		110	क्रम का अनुसारण करती है	हैं, वह है :
	(A) O < N < B < Be	(B) Be $<$ B $<$ N $<$ O	***	(A) O < N < B < Be	(B) Be < B < N < O
	(C) B < Be < N < O	(D) B < Be < O < N	* *	(C) B < Be < N < O	(D) B < Be < O < N
24.	Which of the following	g is not planar?	24.	निम्न में से कौनसा समलर्त	ोय नहीं है ?
	$(A) H_2O$	$(B) BrF_3$		$(A) H_2O$	(B) BrF_3
	(C) XeF ₄	(D) None of these		(C) XeF_4	(D) इनमें से कोई नहीं
25.	Which one of the follow	wing statement is false :	25.	निम्न में से कौनसा एक क	थन असत्य है ?
	(A) work is a state fun	ction		(A) कार्य एक अवस्था फत	नन है।
	(B) temperature is a sta	ate function		(B) ताप एक अवस्था फल	न है।
	(C) change in the state	is completely defined		(C) अवस्था में परिवर्तन क	ो पूर्ण रूप से परिभाषित किया
	when the initial and fin	al states are specified		जाता है, जब प्रारम्भिक तथा	अन्तिम अवस्थायें दी गई हो।
	(D) work appears at the	e boundary of the system		(D) कार्य तंत्र की परिसीम	ना पर होता है।

• (a 11 1 1				~ `
26.	Consider the reaction		26.	निम्नलिखित अभिक्रि	
		$(s) \rightarrow Cl_2(g) + NOCl(g) +$		5	$Cl(s) \rightarrow Cl_2(g) + NOCl(g) +$
	$2H_2O(g) + 3KNO_3$	(s)		$2H_2O(g) + 3KN$	5
	The amount of H	NO ₃ required to produce		2	को उत्पन्न करने के लिए आवश्यक
	110.0 g of KNO_3 is	3		HNO ₃ की मात्रा है	:
	(Given : Atomic ma	asses of H, O, N and K are		(दिया गया है : H, (O, N और K के परमाणु द्रव्यमान
	1, 16, 14 and 39, re	spectively.)		क्रमशः 1, 16, 14 ए	प्वं 39 हैं I)
	(A) 33.2 g	(B) 69.4 g		(A) 33.2 g	(B) 69.4 g
	(C) 91.5 g	(D) 162.5g		(C) 91.5 g	(D) 162.5g
27.	From the following	which has highest specific	27.	सबसे अधिक विशिष्ट	ए आवेश का मान निम्न में से किसका
	charge value ?			होगा ?	
	(A) e particle	(B) p particle		(A) e कण	(B) p कण
	(C) α particle	(D)All have same		(C) α कण	(D) सभी समान है
28.	The increasing orde	er of electron affinity of the	* 28.	तत्वों के इलैक्ट्रॉनिक	⁵ विन्यास में इलैक्ट्रॉन बन्धुतआ का
	electronic configura	tions of element is :-	** ~	बढ़ता क्रम है :–	
	(I) $1s^2 2s^2 2p^6 3s^2 3$	3p ⁵	***** D11291023 ***** 87	(I) $1s^2 2s^2 2p^6 3s^2$	$s^2 3p^5$
	(II) $1s^2 2s^2 2p^3$		29	(II) $1s^2 2s^2 2p^3$	
	(III) $1s^2 2s^2 2p^5$		D11	(III) $1s^2 2s^2 2p^5$	
	(IV) $1s^2 2s^2 2p^6 3s^2$	I	* * *	(IV) $1s^2 2s^2 2p^6$	3s ¹
	(A) II < IV < III <	Ι	*	(A) II < IV < III	< I
	(B) I < II < III < IV	7		(B) $I < II < III <$	IV
	(C) I < III < II < IV	I		(C) $I < III < II <$	IV
	(D) $IV < III < II <$	Ι		(D) $IV < III < II$	< I
29.	Which of the follow	ing order of dipole-moment	29.	द्विध्रुव आघूर्ण का निग	म्न में से कौनसा क्रम सही है ?
	is correct?				
	(A) HI > HBr > HG	C1 > HF		(A) HI > HBr > I	HCl>HF
	(B) $NF_3 > NH_3 > N$	NCl ₃		(B) $NF_3 > NH_3 >$	> NCl ₃
	(C) $H_2O > H_2S > N_2$	NF ₃		(C) $H_2O > H_2S$	> NF ₃
	(D) $\operatorname{CHCl}_3 > \operatorname{CH}_2 CH$	$Cl_2 > CH_3Cl > CCl_4$		(D) $CHCl_3 > CH$	$I_2CI_2 > CH_3CI > CCI_4$
		Space for	rough wo	rk	

Space for rough work

D11 291 023

- **30.** Which of the following indicated properties is CORRECT ?
 - (A) SF_4 ; sp³d hybridised state 'S' atom

(B) XeOF₄; Two lone pair of electron present on 'Xe' atom

(C) $NH_3 < NF_3$; Dipole moment

(D) $\operatorname{Cl}_2 < \operatorname{F}_2$; Bond Energy

31. A system undergoes a process in which $\Delta E = +$ 300 J while abosrbing 400 J of heat and undergoing an expansion against 0.5 bar. What is the change in vol (in Lit.).

> (A) 2 (B) 4 (C) 5 (D) 3

32. The schrodinger wave equation for hydrogen atom is

$$\psi_{radial} = \frac{1}{16\sqrt{4}} \left(\frac{Z}{a_0}\right)^{3/2} \left[(\sigma - 1) (\sigma^2 - 8\sigma + 12) \right] e^{-\sigma/2}$$

where $\sigma = \frac{2Zr}{a_0}$

($a_0 \& Z$ are constants in which the answer can be expressed).

Minimum & maximum distance of radial node from nucleus respectively are

(A)
$$\frac{a_0}{Z}, \frac{3a_0}{Z}$$

(B) $\frac{a_0}{2Z}, \frac{a_0}{Z}$
(C) $\frac{a_0}{2Z}, \frac{3a_0}{Z}$
(D) $\frac{a_0}{2Z}, \frac{4a_0}{Z}$

30. निम्न में से कौनसा प्रदर्शित गुण सही है ?

 (A) SF₄; 'S' परमाणु की sp³d संकरित अवस्था
 (B) XeOF₄; 'Xe' परमाणु पर दो एकांकी इलेक्ट्रॉन यूग्म उपस्थित हैं

(C) NH, < NF, ; द्विध्रुव आघूर्ण

(D) $Cl_2 < F_2$; बंध ऊर्जा

31. एक निकाय को प्रक्रम से गुजारा जाता है जिसमें
 △E=+ 300 J जबकि 400 J ऊष्मा का अवशोषण होता
 है तथा इस प्रक्रम में 0.5 bar दाब के विरुद्ध प्रसार किया
 जाता है तो आयतन में परिवर्तन क्या होगा। (लीटर में)

32. हाइड्रोजन परमाणु के लिये श्रोडिंगर तरंग समीकरण

$$\psi_{radial} = \frac{1}{16\sqrt{4}} \left(\frac{Z}{a_0}\right)^{3/2} \left[(\sigma - 1)(\sigma^2 - 8\sigma + 12) \right] e^{-\sigma/2}$$

जहाँ $\sigma = \frac{2Zr}{a_0}$ ह

(a₀ तथा Z नियतांक है जिनमें उत्तर व्यक्त किया जा सकता है)

नाभिक से त्रिज्य नोड की न्यूनतम तथा अधिकतम दूरी क्रमशः है

(A)
$$\frac{a_0}{Z}, \frac{3a_0}{Z}$$

(B) $\frac{a_0}{2Z}, \frac{a_0}{Z}$
(C) $\frac{a_0}{2Z}, \frac{3a_0}{Z}$
(D) $\frac{a_0}{2Z}, \frac{4a_0}{Z}$

Space for rough work

***** D11291023 *****

Space for rough work

	Order	Order Corresponding				
		property				
	(A) $N^{3-} < Cl^{-} < S^{2-}$	Ionic radii				
	(B) $Fe^{2+} < Co^{2+} < Ni^{2+}$	Ionisation energy				
	(C) Al < Ga < Zn	Ionisation energy				
	(D) $Sc > Y > La$ Atomic radii					
6.	Which of the following option is CORRECT?					
	(A) $3p-3p > 3p-3d > 3d-3d$ (π bond strength)					
	(A) $3p-3p > 3p-3d > 3d-3d$ (π bond strength) (B) Ethanol < Glycerol < ethylene glycol (Viscosity) (C) $XeO_3F_2 > XeF_4 = XeF_2$ (Dipole moment) (D) Number of P-O-P bonds in cyclic trimetaphosphoric acid is 3					
	(Viscosity)					
	(C) $XeO_3F_2 > XeF_4 = XeF_2$ (Dipole moment)					
	(D) Number of P-	O-P bonds in cyclic				
	trimetaphosphoric aci	d is 3				
,		. 11 . 1 . /				


```
(i) Magnitude of enthalpy of formation -H_2O < D_2O
(ii) Temperature of maximum density -D_2O > H_2O
(iii) Dielectric constant -H_2O > D_2O
```

```
(iv) Viscosity - D_2O > H_2O
(v) Bond strength - (O-H) in H_2O > (O-D) in D_2O
```

```
(A) 5 (B) 4
(C) 3 (D) 2
```


35.	निम्न में से कौन, गलत रूप में सुमेलित है ?				
	क्रम	सम्बन्धित			
		गुण			
	(A) $N^{3-} < Cl^{-} < S^{2-}$	आयनिक त्रिज्या			
	(B) $Fe^{2+} < Co^{2+} < Ni^{2+}$	आयनन ऊर्जा			
	(C) Al \leq Ga \leq Zn	आयनन ऊर्जा			
	(D) $Sc > Y > La$	परमाण्विक त्रिज्या			
36.	निम्न में से कौनसा विकल्प स	ही है ?			
	(A) 3p-3p > 3p-3d > 3d-3d (π बंध सामर्थ्य) (B) ऐथेनोल < ग्लिसरोल < एथिलीन ग्लाइकोल (श्यानता)				
	(C) $XeO_{3}F_{2} > XeF_{4} = X$	${ m eF}_2$ (द्विध्रुव आघूर्ण)			

(D) चक्रीय ट्राइमेटाफास्फोरिक अम्ल में P–O–P बंधों की संख्या 3 है।

37. निम्न में से कितने क्रम सही है/हैं ?

(i) निर्माण की एन्थैल्पी का	परिमाण - $H_2O < D_2O$
(ii) सर्वाधिक घनत्व का ताप	$T - D_2 O > H_2 O$
(iii) डाइइलेक्ट्रिक स्थिरांक	$-H_2O > D_2O$
(iv) श्यानता - $D_2O > H_2$	0
(v) बंध सामर्थ्य - (O-H) मे	$\dot{H}_2 O > (O - D) \dot{H} D_2 O$
(A) 5	(B) 4
(C) 3	(D) 2

- 38. What is correct for reversible adiabatic process involving an ideal gas?
 - (A) $\Delta U = 0$
 - (B) $\Delta H = 0$
 - (C) W = 0
 - (D) $TV^{\gamma-1} = constant$
- 39. In which case change in entropy is negative
 - (A) $2H(g) \rightarrow H_2(g)$
 - (B) Evaporation of water
 - (C) Expansion of a gas at constant temperature
 - (D) Sublimation of solid to gas
- **40.** 1 M NaOH solution was slowly added into 1000 mL of 183.75 g impure H_2SO_4 solution and the following plot was obtained. Determine the weight (in gram) of H_2SO_4 in sample.

- उत्क्रमणीय व रूद्वोष्मीय प्रक्रम जिसमें एक आदर्श गैस 38. सम्मिलित है, के लिए सही है –
 - (A) $\Delta U = 0$
 - (B) $\Delta H = 0$
 - (C) W = 0
 - (D) TV^{γ-1} = नियतांक
- किस स्थिति में एन्ट्रापी में परिवर्तन ऋणात्मक होगा– 39.
 - (A) $2H(g) \rightarrow H_2(g)$
 - (B) जल का वाष्पीकरण
 - (C) स्थिर ताप पर एक गैस का प्रसार
 - (D) ठोस से गैस में ऊर्ध्वापातन
- 1 M NaOH विलयन को 183.75 ग्राम अशुद्व H₂SO₄ **40.** विलयन के 1000 mL में धीरे धीरे मिलाते है तथा जिससे निम्न आरेख प्राप्त होता है। नमूने में H₂SO4 के भार (ग्राम में) की गणना कीजिये –

Space for rough work

PART III : BIOLOGY

This section contains 20 Multiple Choice Questions (Q : 41 to Q : 60). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

41.	Biradial symmet	ry and lack of cnidoblasts are	41.	द्विअरीय सममिति औ	र निडोब्लास्ट (दंश कोशिकाओं) की
	the characteristics of : (A) Starfish and sea anemone			अनुपस्थिति किसक	ग अभिलक्षण है ?
				(A) तारा मछली औ	र समुद्री एनीमोन
	(B) Ctenoplana a	(B) Ctenoplana and beroe		(B) टीनोप्लानो और	र बेरोई
	(C)Aurelia and p	aramoecium		(C) ऑरेलिया और	पैरामीशियम
	(D) Hydra and starfish			(D) हाइड्रा और ताज	रामछली
42.	Sporophytic gene	eration is represented only by	42.	बीजाणुद्भिद् पीढ़ी	केवल एक कोशिकीय युग्मनज के
	single celled zygo	ote in :		द्वारा प्रदर्शित होती है	÷ .
	(A) Ferns	(B)Algae		(A) फर्न में	(B) शैवालों में
	(C) Mosses	(D) Liverworts	* * * *	(C) मॉसेज में	(D) लिवरवर्ट्स में
43.	Which moss is us	ed for packging material with	4 3.	निम्न में से कौनसा मे	ॉस उच्च जल धारण क्षमता रखता है
	high water holdin	g capacity :	**** 23. 43.	तथा पैकिंग मैटेरियत	न के रूप में प्रयुक्त होता है :
	(A) Andraea		111	(A) ऐन्ड्रिया	
	(B) Funaria		**	(B) फ्यूनेरिया	
	(C) Sphagnum		* * 	(C) स्फैगनम	
	(D) Polytrichum			(D) पॉलीट्राइकम	
44.	Which of the f	ollowing is not true w.r.t.	44.	निम्न में से कौनसा टे	रिडोफाइट्स के लिए सत्य नहीं है :
	pteridophytes :				
	(A) True root ste	m and leaves are found		(A) मूल, तना तथा	पत्तियां उपस्थित
	(B) Mostly home	sporous		(B) अधिकतर समर्ब	ोजाणु
	(C) Main plant b	ody sporophytic		(C) मुख्य पादपकार	य बीजाणुद्भिद्
	(D) Non-vascula	r		(D) असंवहनीय (Ne	on-vascular)

Space for rough work

Note : Please do not attempt this section if you are a Maths student.

Class-XI (Shift-II) निम्न में से कौन विषैला सर्प नहीं है ? 45. Which one of the following is a non-poisonous 45. snake? (A) Cobra (A) कोबरा (B) Viper (B) वाइपर (D) क्रेत (C) Python (D) Krait (C) अजगर फ्लोएम का निम्न में से कौनसा अवयव दुढोतकीय Which of the following component of phloem is 46. 46. made up of sclerenchymatous cells : (Sclerenchymatous) कोशिकाओं का बना होता है: (A) फ्लोएम रेशें (Pholem fibres) (A) Pholem fibres (B) Sieve tubes (B) चालनी नलिकायें (Sieve tubes) (C) Companion cells (C) सहकोशिकायें (Companion cells) (D) फ्लोएम मदूतक (Phloem parenchyma) (D) Phloem parenchyma एधा युक्त संवहन पुल कहलाते है : 47. Vascular bundles with cambium are called : 47. (A) Closed (A) बंद (Closed) ***** D11291023 ***** (B) खुले (Open) (B) Open (C) बाह्यआदिदारूक (Exarch) (C) Exarch (D) अन्तःआदिदारूक (Endrach) (D) Endrach 48. The category which includes related families is : 48. किस श्रेणी या संवर्ग में संबंधित कुल आते हैं : (A) Phylum (A) संघ (Phylum) (B) Order (B) गण (Order) (C) वर्ग (Class) (C) Class (D) वंश (Genus) (D) Genus जब किसी पादप अंग के केन्द्र की ओर अनुदारू 49. When metaxylem lie towards centre of the organ 49. this condition is known as : (Metaxylem) स्थित हो इस स्थिति को कहते है : (A) बाह्यआदिदारूक तथा मूल में पाया जाता है (A) Exarch and found in roots (B) Endarch and found in stem (B) अन्तः आदिदारूक तथा तने में पाया जाता है (C) अन्तः आदिदारूक तथा मूल (root) में पाया जाता है (C) Endarch and found in root (D) इनमें से कोई नहीं (D) None of these

Space for rough work

Note : Please do not attempt this section if you are a Maths student.

50.The cork cambium, cork and secondary cortex are collectively called :50.하기 एघा (Cork cambium), काग (Cork) तथा दितीयक वल्कुट (Secondary cortex) को मिलाकर कया कहते है :(A) Phelloderm(A) कागअरतर(B) Phellogen(B) कागजन(C) Periderm(C) परिचर्म(D) Phellem(D) काग51.Leaf bearing region of the stem is known as : (A) Node51.(A) Node(A) नोड(B) Internode(B) इन्टरनॉड(C) Axillary bud(C) क्षीय कलिका (D) इनमें से कोई नहीं)52.Which type of meristem is involved in the
atu कहते है :(A) Phelloderm(A) कागअस्तर(B) Phellogen(B) कागजन(C) Periderm(C) परिचर्म(D) Phellem(D) काग51.Leaf bearing region of the stem is known as :51.तने के पर्ण धारण करने वाला भाग कहलाता है :(A) Node(A) नोड(B) Internode(B) इन्टरनॉड(C) Axillary bud(C) कक्षीय कलिका(D) None of these(D) इनमें से कोई नहीं
(A) Phelloderm(A) कागअस्तर(B) Phellogen(B) कागजन(C) Periderm(C) परिचर्म(D) Phellem(D) काग51.Leaf bearing region of the stem is known as :51.तने के पर्ण धारण करने वाला भाग कहलाता है :(A) Node(A) नोड(B) Internode(B) इन्टरनॉड(C) Axillary bud(D) कामी(D) None of these(D) इनमें से कोई नहीं
(B) Phellogen(B) कागजन(C) Periderm(C) परिचर्म(D) Phellem(D) काग51.Leaf bearing region of the stem is known as :51.तने के पर्ण धारण करने वाला भाग कहलाता है :(A) Node(A) नोड(B) Internode(B) इन्टरनॉड(C) Axillary bud(C) कक्षीय कलिका(D) None of these(D) इनमें से कोई नहीं
(C) Periderm(C) परिचर्म(D) Phellem(D) काग51.Leaf bearing region of the stem is known as :51.तने के पर्ण धारण करने वाला भाग कहलाता है :(A) Node(A) नोड(A) नोड(B) Internode(B) इन्टरनॉड(C) कक्षीय कलिका(D) None of these(D) इनमें से कोई नहीं
(D) Phellem(D) काग51.Leaf bearing region of the stem is known as : (A) Node51.तने के पर्ण धारण करने वाला भाग कहलाता है : (A) नोड(B) Internode(B) इन्टरनॉड(C) Axillary bud(C) कक्षीय कलिका(D) None of these(D) इनमें से कोई नहीं
51.Leaf bearing region of the stem is known as : (A) Node51.तने के पर्ण धारण करने वाला भाग कहलाता है : (A) नोड(B) Internode(B) इन्टरनॉड(C) Axillary bud(C) कक्षीय कलिका(D) None of these(D) इनमें से कोई नहीं
(A) Node(A) नोड(B) Internode(B) इन्टरनॉड(C) Axillary bud(C) कक्षीय कलिका(D) None of these(D) इनमें से कोई नहीं
(B) Internode(B) इन्टरनॉड(C) Axillary bud(C) कक्षीय कलिका(D) None of these(D) इनमें से कोई नहीं
(C) Axillary bud(C) कक्षीय कलिका(D) None of these(D) इनमें से कोई नहीं
(D) None of these(D) इनमें से कोई नहीं
52. Which type of meristem is involved in the $\ddagger 52$. पर्णों के निर्माण में किस प्रकार का विभज्योतक सम्मिलित
formation of leaves : र्क्ष होता है :
52. Which type of meristem is involved in the formation of leaves : 52. पर्णो के निर्माण में किस प्रकार का विभज्योतक सम्मिलित in (A) Lateral meristem होता है : होता है : (A) Lateral meristem (A) पार्श्व मेरिस्टेम (B) Shoot apical meristem (B) शूट एपिकल मेरिस्टेम (C) Marginal meristem (C) सीमांत मेरिसटेम (D) All of these (D) उपरोक्त सभी
(B) Shoot apical meristem (B) शूट एपिकल मेरिस्टेम
(C) Marginal meristem $\square_{\mbox{$\star$}}$ (C) सीमांत मेरिसटेम
(D) All of these (D) उपरोक्त सभी
53. Mantle is a/an : 53. प्रावार है :
(A) Soft and spongy layer of skin (A) त्वचा की कोमल व स्पंजी परत
(B) Rasping organ (B) रेतीजिह्वा
(C) Calcareous shell(C) कैल्सियम युक्त कवच
(D) Another name of visceral hump (D) आंतरांग ककूद का अन्य नाम

Space for rough work

Note : Please do not attempt this section if you are a Maths student.

54. Select the **correct** option with respect to the given diagram:

- (A) Free central Dianthus
- (B)Axile Primrose
- (C) Free central china rose
- (D)Axile-Argemone
- 55. Which of the following family shows both cohesion and adhesion between floral parts?
 - (A) Solanaceae
 - (B) Fabaceae
 - (C) Liliaceae
 - (D) Both (A) and (C)
- 56. Which of the following kingdom show's only heterotrophic mode of nutrition
 - (A) Fungi
 - (B) Protista
 - (C)Animalia
 - (D) Both (A) & (C)
- 57. How many germ layers are present in the embryonic stage of platyhelminthes ?
 - (A) One(B) Two(C) Three(D) Four

54. दिए गए आरेख के सम्बन्ध में सही विकल्प का चयन कीजिएः

- (A) मुक्तस्तम्भीय डायऐंथस
- (B) स्तम्भीय प्रिमरोज
- (C) मुक्तस्तम्भीय गुड़हल
- (D) स्तम्भीय आर्जोमोन
- 55. निम्नलिखित में से कौनसा कुल पुष्पी भागों के बीच सासंजन तथा आसंजन दोनों दर्शाता है ?
 - (A) सोलेनेसी
 - (B) फैबेसी
 - (C) लिलिएसी
 - (D) (A) तथा (C) दोनों
- निम्नलिखित में से कौनसा जगत केवल विषमपोषी विधी द्वारा पोषण दर्शाता है :
 - (A) कवक

(C) तीन

- (B) प्रोटिस्टा
- (C) ऐनिमेलिया
- (D) (A) और (C) दोनों
- 57. प्लेटिहैल्मिन्थीज की भ्रूणीय अवस्था में कितने जनन स्तर पाये जाते हैं ?
 (A) एक (B) दो

(D) चार

Space for rough work

***** D11291023 *****

Note : Please do not attempt this section if you are a Maths student.

Space for rough work

Note : Please do not attempt this section if you are a Maths student.

PART III : MATHEMATICS

This section contains 20 Multiple Choice Questions (Q : 41 to Q : 60). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

41.	Given the sets $A = \{2,3,4,5,6,7\}, B = \{6,7,8\}$	41.	यदि समुच्चय A = {2,3,4,5,6,7}, B = {6,7,8} तथा
	and $C = \{1, 5, 8, 9\}$ then find $A \cap (B \cup C)$:		$\mathrm{C}=\{1,5,8,9\}$ हो, तो $\mathrm{A}\cap(\mathrm{B}\cup\mathrm{C})$ का मान होगा :
	(A) {6,7,8}		(A) {6,7,8}
	(B) {5,6,7}		(B) {5,6,7}
	(C) {4,5,6,7}		(C) {4,5,6,7}
	(D) $\{4,5,6\}$		(D) {4,5,6}
42.	If $f(x) = \sin x + \cos x$ then $f\left(\frac{\pi}{4}\right)$ is	42.	यदि $f(x) = \sin x + \cos x$ हो, तो $f\left(\frac{\pi}{4}\right)$ होगा:
	(A) $\frac{1}{\sqrt{2}}$	*	(A) $\frac{1}{\sqrt{2}}$
	(B) $-\frac{1}{\sqrt{2}}$	***** 01123 *****	(B) $-\frac{1}{\sqrt{2}}$
	(C) $\sqrt{2}$	R Z Z	(C) $\sqrt{2}$
	(D) $-\sqrt{2}$	5	(D) $-\sqrt{2}$
43.	Let $Z_1 = 1 + \sqrt{3}i$ and $Z_2 = 3 + 4i$. Then the	* * 43.	यदि $Z_1 = 1 + \sqrt{3}i$ तथा $Z_2 = 3 + 4i$ हो तो
	modulus of $\frac{Z_1}{Z_2}$ is :		$\frac{Z_1}{Z_2}$ का मापांक होगा :
	(A) $\frac{2}{5}$		(A) $\frac{2}{5}$
	(B) $-\frac{2}{5}$		(B) $-\frac{2}{5}$
	(C) 2		(C) 2
	(D) 5		(D) 5

Space for rough work

Note : Please do not attempt this section if you are a Biology student.

				Class-XI (Shift-II)
44.	If $n(A) = 20$, $n(B) = 18$ and $n(A \cap B) = 5$ then		44.	यदि n(A) = 20, n(B) = 18 तथा n(A∩B) = 5 हो, तो
	$n(A \cup B)$ is:			$n(\mathrm{A} \cup \mathrm{B})$ का मान होगा :
	(A) 13			(A) 13
	(B) 12			(B) 12
	(C) 33			(C) 33
	(D) 18			(D) 18
45.	If $\sin \theta + \csc \theta = 2$ then $\sin^2 \theta + \csc^2 \theta$ is		45.	यदि $\sin \theta + \csc \theta = 2$ हो, तो $\sin^2 \theta + \csc^2 \theta$ का
	equal to :			मान बराबर होगा :
	(A) 1			(A) 1
	(B) 4			(B) 4
	(C) 2			(C) 2
	(D) 0			(D) 0
46.	If $\tan \theta = -\frac{4}{3}$ then $\sin \theta$ is :	3 ****	46.	यदि $\tan \theta = -\frac{4}{3}$ हो, तो $\sin \theta$ का मान होगा :
	(A) $-\frac{4}{5}$ but not $\frac{4}{5}$	29102		$(A) -\frac{4}{5} \overrightarrow{o} abr = \frac{4}{5} - \overrightarrow{b}$
	(B) $-\frac{4}{5}$ or $\frac{4}{5}$	***** D11291023 *****		(B) $-\frac{4}{5}$ या $\frac{4}{5}$
	(C) $\frac{4}{5}$ but not $-\frac{4}{5}$	***		$(C) \frac{4}{5} \vec{e} + (C) \frac{4}{5} \vec{e} + (C) \frac{4}{5} \vec{e} + (C) e$
	(D) None			(D) कोई नहीं
47.	If $4x^2 + 2x - 6 = 0$ has real roots a and b. Then		47.	यदि $4\mathbf{x}^2+2\mathbf{x}-6=0$ के वास्तविक मूल \mathbf{a} तथा \mathbf{b} है, तो
	$(a+b)^2 + 3$ is :			(a + b) ² + 3 का मान होगा :
	(A) $\frac{13}{4}$			(A) $\frac{13}{4}$
	(B) $-\frac{13}{4}$			(B) $-\frac{13}{4}$
	Space for			

Space for rough work

Note : Please do not attempt this section if you are a Biology student.

				Class-XI (Shift-II)
	(C) $\frac{1}{4}$ (D) $-\frac{1}{4}$			(C) $\frac{1}{4}$ (D) $-\frac{1}{4}$
48.	The general solution of $\cos \theta = \frac{-1}{2}$ is :		48.	$\cos \theta = \frac{-1}{2}$ का व्यापक हल होगा :
	(A) $2n\pi + \frac{2\pi}{3}$			(A) $2n\pi + \frac{2\pi}{3}$
	(B) $2n\pi - \frac{2\pi}{3}$			(B) $2n\pi - \frac{2\pi}{3}$
	(C) $2n\pi \pm \frac{2\pi}{3}$			(C) $2n\pi \pm \frac{2\pi}{3}$
	(D) $2n\pi \pm \frac{\pi}{6}$	*		(D) $2n\pi \pm \frac{\pi}{6}$
49.	Fifth term of a G.P. is 2 then the product of its	***** D11291023 *****	49.	G.P. का पाँचवा पद 2 हो, तो इसके प्रथम 9 पदों का गुणन
	first 9 terms is :	102;		होगा :
	(A) 256	129		(A) 256
	(B) 512	5		(B) 512
	(C) 1024	****		(C) 1024
	(D) None			(D) कोई नहीं
50.	If $\tan \theta = \frac{1}{2}$ and $\tan \phi = \frac{1}{3}$ then the value of θ		50.	यदि $\tan \theta = \frac{1}{2}$ तथा $\tan \phi = \frac{1}{3}$ हो, तो $\theta + \phi$ का मान
	$+\phi$ is :			होगा :
	(A) $\frac{\pi}{6}$			(A) $\frac{\pi}{6}$
	(B) π			(B) π
	(C) 0			(C) 0
	(D) $\frac{\pi}{4}$			(D) $\frac{\pi}{4}$
	Space for	rou	igh wor	"k

D11 291 023

Note : Please do not attempt this section if you are a Biology student.

		1	Class-XI (Shift-II)
51.	If $(1 - p)$ is a root of quadratic equation $x^2 + px$	51.	यदि द्विघात समीकरण $\mathbf{x}^2 + \mathbf{p}\mathbf{x} + (1 - \mathbf{p}) = 0$ का एक मूल
	+(1-p)=0 then its roots are :		(1-p) हो तो मूल होंगे :
	(A) 0, -1		(A) 0, -1
	(B)-1, 1		(B) –1, 1
	(C) 0, 1		(C) 0, 1
52.	(D)-1,2		(D) –1, 2
	The value of $(1+i)^{30}$ is :	52.	$(1\!+i)^{30}$ का मान होगा :
	$(A) - 2^{15}$		$(A) - 2^{15}$
	(B) 2 ¹⁵ i		(B) 2 ¹⁵ i
	$(C) - 2^{15}i$		$(C) - 2^{15}i$
	(D) 6^5		(D) 6^5
53.	If $n(A) = 3$ and $n(B) = 5$ then total number of	53.	यदि $n(A) = 3$ तथा $n(B) = 5$ हो, तो समुच्चय A से B में
	relations defined from set A to set B :	***	परिभाषित संबंधों की कुल संख्या होगी :
	(A) 2^3	23 *	(A) 2^3
	(B) 15	910	(B) 15
	(C) 2^{15}	112	(C) 2^{15}
	(D) 2^5	***** D11291023 ***** 54	(D) 2^5
54.	Find the number of terms in the expansion of	[*] 54.	$(1 + 3x + 3x^2 + x^3)^6$ के प्रसार में पदों की संख्या होगी :
	$(1+3x+3x^2+x^3)^6$:		
	(A) 18		(A) 18
	(B) 16		(B) 16
	(C) 17		(C) 17
	(D) 19		(D) 19
55.	Find the values of a for which the roots of the	55.	यदि समीकरण $(2a-5)x^2 - 2(a-1)x + 3 = 0$ के
	equation $(2a - 5)x^2 - 2(a - 1)x + 3 = 0$ are		मूल समान है तो a का मान होगा :
	equal:		
		1	

Space for rough work

Note : Please do not attempt this section if you are a Biology student.

"You don't have to be great to start. But you have to start to be great."

	(A) 4			(A) 4
	(B)-4			(B)-4
	(C) 0			(C) 0
	(D) None			(D) कोई नहीं
56.	The term independent of x in the expansion of		56	$\left(\frac{x}{3} + \frac{3}{x}\right)^{10}$ के प्रसार में x से स्वतंत्र पद होगा :
	$\left(\frac{x}{3}+\frac{3}{x}\right)^{10}$ will be :		50.	$\begin{pmatrix} 3 & x \end{pmatrix}$ of year 4×4 each 3×4 constants of the first 3×3
	$\left(\frac{3}{3}, \frac{1}{x}\right)$ will be:			
	(A) ${}^{10}C_4$			(A) ${}^{10}C_4$
	(B) ${}^{10}C_5$			(B) ${}^{10}C_5$
	(C) ${}^{10}C_5 (3)^5$			(C) ${}^{10}C_5(3)^5$
	(D) None			(D) कोई नहीं
57.	The domain of the function		57.	फलन $f(x) = \log_2(9 - x^2)$ का प्रांत होगा :
	$f(x) = \log_2(9-x^2)$ is:	***** D11291023 *****		
	(A) [-3, 3]	023		(A) [-3, 3]
	(B) (-3,3)	291		(B) (-3,3)
	(C) $[-3, 2) \cup (2, 3]$	D11		(C) $[-3, 2) \cup (2, 3]$
	(D) None	***		(D) कोई नहीं
58.	$\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} =$	* 	58.	$\sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ =$
	(A) $\frac{1}{16}$			(A) $\frac{1}{16}$
	(B) $\frac{1}{8}$			(B) $\frac{1}{8}$
	$(\mathbf{B})\frac{1}{8}$			C C
	(C) 16			(C) 16
	(D) None			(D) कोई नहीं

Space for rough work

Note : Please do not attempt this section if you are a Biology student.

59.	For an arithmetic progression if $T_p = \frac{1}{q}$,		59.	समान्तर श्रेढ़ी के लिए $T_p = \frac{1}{q}, T_q = \frac{1}{p} (p \neq q)$ हो, तो
	$T_q = \frac{1}{p} (p \neq q)$ then T_{pq} is :			Т _{рq} होगा :
	(A) 1			(A) 1
	(B)-1			(B)-1
	(C) $\frac{1}{pq}$			(C) $\frac{1}{pq}$
	(D) pq			(D) pq
60.	If $a = \cos \theta + i \sin \theta$, $b = \cos \phi + i \sin \phi$,		60.	यदि $a = \cos \theta + i \sin \theta$, $b = \cos \phi + i \sin \phi$,
	$c = \cos \psi + i \sin \psi$ and $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 2$, then			$\mathbf{c} = \cos \psi + i \sin \psi$ है तथा $\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{b}}{\mathbf{c}} + \frac{\mathbf{c}}{\mathbf{a}} = 2$ हो, तो
	$\sin(\theta - \phi) + \sin(\phi - \psi) + \sin(\psi - \theta)$ equals:	 *		$\sin(heta\!-\!\phi)\!+\!\sin(\phi\!-\!\psi)\!+\!\sin(\psi\!-\! heta)$ का मान
		***** D11291023 *****		होगा :
	(A) 3	023		(A) 3
	(B) 2	291		(B) 2
	(C) 0	5		(C) 0
	(D)-2	****		(D)-2
		*		

D11 291 023