

CSR Initiative of Matrix Education, Sikar to motivate and reward young talent.

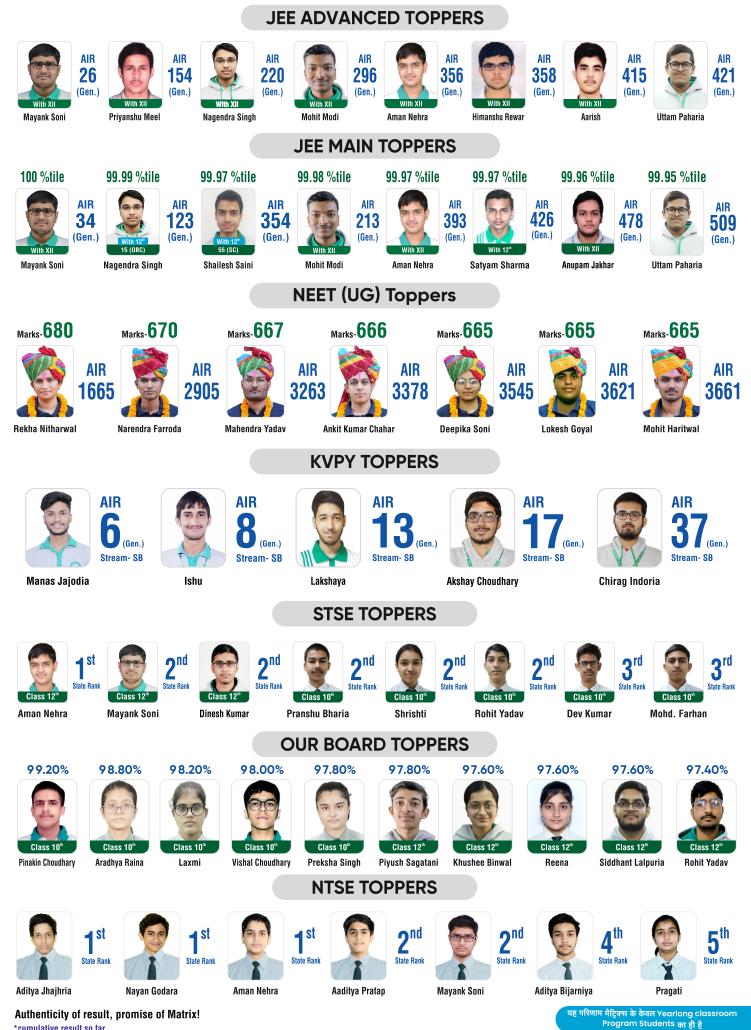
✓ Total Questions : 60 ✓ Maximum Marks : 240 ✓ Duration : 2 Hrs.							
PAPER PATTERN							
Part	(I) Physics	(II) Chemistry	(III) Biology or Maths				
Number of Questions	20	20	20				

Marking Scheme: +4 For Correct Answer (One mark will be deducted for wrong answer)

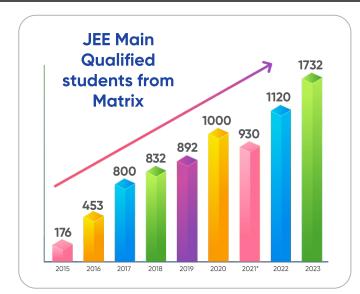
Instructions :

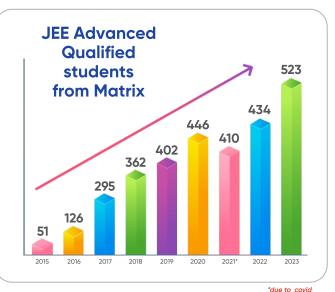
PAPER

CODE

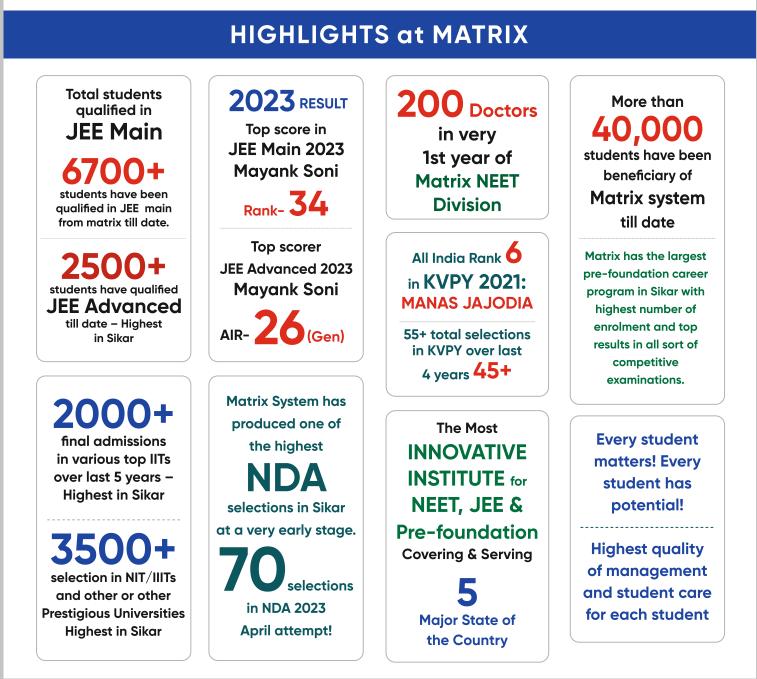

- 1. This Booklet is your **Question Paper.** DO NOT **break seal** of Booklet until the invigilator instructs to do so.
- 2. The Answer Sheet is provided to you separately which is a machine readable Optical Response Sheet (ORS). You have to mark your answer in the ORS by darkening bubble, as per your answer choice , by using **Black** /**Blue** ball point pen only.
- 3. If you are found involved in **cheating** or disturbing others then your ORS will be cancelled.
- 4. Do not **damage** the ORS sheet in any manner. If ORS is damaged or not completed properly, your results will not be prepared.
- 5. If you have any **confusion** in filling-up ORS sheet, please **contact** your invigilator. Incomplete ORS will be not be evaluated.
- 6. You can take the question paper home once the ORS is submitted.

Solutions Kindly Scan QR Code and subscribe


Matrix youtube channel


MATRIX: Where producing outstanding results is a habit!

*cumulative result so far


Remarkable result growth in both JEE Main & Advanced on a consistent basis

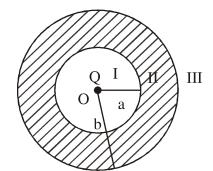
Note : All results are from Matrix year long classroom program at Sikar only.

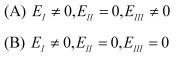
"Authenticity of result, promise of Matrix"

Class-XII (Shift-II)

PART I : PHYSICS

This section contains 20 Multiple Choice Questions (Q : 01 to Q : 20). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

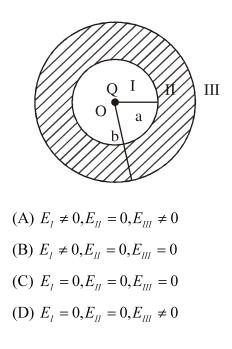

1. A 10μ C charge is divided into two parts and placed at 1 cm distance so that the repulsive force between them is maximum. The charges of the two parts are:


(A) $7\mu C$, $3\mu C$ (B) $5\mu C$, $5\mu C$

(C) $9\mu C$, $1\mu C$ (D) $8\mu C$, $2\mu C$

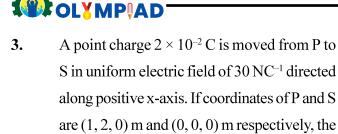
2. As shown in the figure, a point charge Q is placed at the centre of conducting spherical shell of inner radius a and outer radius b. The electric field due to charge Q in three different regions I, II and III is given by :

$$(E_{I}: r < a, E_{II}: a < r < b, E_{III}: r > b)$$


- (C) $E_I = 0, E_{II} = 0, E_{III} = 0$
- (D) $E_I = 0, E_{II} = 0, E_{III} \neq 0$

- एक 10 μ C आवेश दो भागों में विभाजित किया जाता है तथा
 1 cm की दूरी पर रख दिया जाता है ताकि इसके बीच प्रतिकर्षण बल अधिकतम हो | दोनों भागों के आवेश हैं :
 - (A) $7\mu C$, $3\mu C$ (B) $5\mu C$, $5\mu C$

(C) $9\mu C$, $1\mu C$ (D) $8\mu C$, $2\mu C$

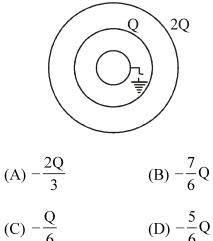

 दिखाएँ गये चित्र के अनुसार गोलीय चालक कोश के केन्द्र पर Q आवेश रखा है जिसकी आन्तरिक त्रिज्या a एवं बाहरी त्रिज्या b है। तीन अलग I, II व III क्षेत्रों में वैधुत क्षेत्र दिया है :

 $(E_1: r < a, E_{11}: a < r < b, E_{111}: r > b)$

Space for rough work

***** D12291023 *****

work done by electric field will be


(A) 600 mJ $(B) - 600 \, mJ$

(C)-1200 mJ (D) 1200 mJ

4. In a cuboid of dimension $2L \times 2L \times L$, a chage q is placed at the center of the surface 'S' having area of 4 L^2 . The flux through the opposite surface to 'S' is given by

(A)
$$\frac{q}{3\epsilon_0}$$
 (B) $\frac{q}{6\epsilon_0}$
(C) $\frac{q}{2\epsilon_0}$ (D) $\frac{q}{12\epsilon_0}$

5. Three concentric spherical conducting shells having radii R, 2R and 3R are shown in figure. Charge on inner most sphere after it is earthed is :

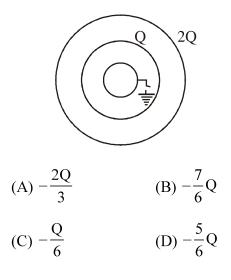
 $(C) - \frac{Q}{6}$

30 NC⁻¹ मान के किसी एकसमान विद्यूत क्षेत्र में, 3. $2 \times 10^{-2} \ C$ का एक बिन्दु आवेश धन x-अक्ष के अनुदिश बिन्दु P से S पर जाता है। यदि P एवं S के निर्देशांक क्रमशः (1, 2, 0) m एवं (0, 0, 0) हैं, तो इस प्रक्रम में विधुत क्षेत्र द्वारा किए कार्य मान होगा |

(A) 600 mJ $(B) - 600 \, mJ$

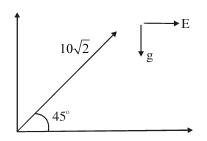
(C)
$$-1200 \text{ mJ}$$
 (D) 1200 mJ

4. $2L \times 2L \times L$ विमा वाले एक घनाभ के पृष्ठ S जिसका क्षेत्रफल $4L^2$ है, के केन्द्र पर q आवेश रखा है | S के विपरीत पुष्ठ से गुजरने वाला फ्लक्स है :

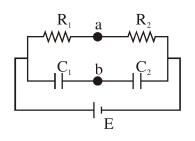

(A)
$$\frac{q}{3\epsilon_0}$$
 (B) $\frac{q}{6\epsilon_0}$

(C)
$$\frac{q}{2\epsilon_0}$$
 (D) $\frac{q}{12\epsilon_0}$

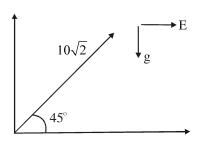
***** D12291023 *****

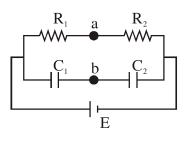

5.

तीन संकेन्द्रीय चालक गोलीय कोशों की त्रिज्या R, 2R तथा 3R है, जैसा कि चित्र में दर्शाया है । सबसे अन्दर वाले गोले को भूसंपर्कित करने के पश्चात् उस पर आवेश होगा —



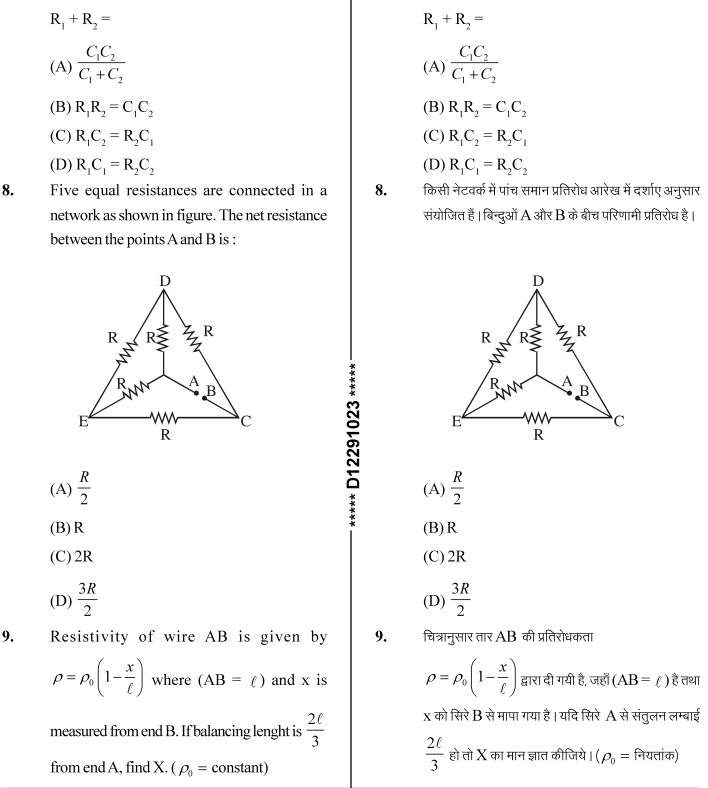
Space for rough work

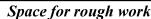

6. A particle of mass 1gm and charge $-0.1 \,\mu$ C is projected from ground with a velocity $10\sqrt{2}$ m/s at an angle of 45° with horizontal in the area having uniform electric field 1 kV/cm in horizontal direction. Accelereation due to gravity is 10m/s² in vertical downward direction. Select incorrect statement:


- (A) Time of flight for particle is 2 sec
- (B) Range of particle is 20 m
- (C) Total displacement of particle is 0 m
- (D) Particle will follow straight line motion.
 7. Two resistors with resistances R₁ and R₂ are connected in series and so are two capacitors with capacitances C₁ and C₂, these two systems are connected to a battery as shown in figure. Potential difference between a and b is zero in steady state if

6. द्रव्यमान 1gm तथा आवेश – 0.1 μ C वाले एक कण को धरातल से 10√2 m/s वेग के साथ क्षेतिज से 45° कोण पर क्षेतिज दिशा में 1 kV/cm वाले एकसमान विद्युत क्षेत्र में प्रक्षेपित किया जाता है। यहाँ गुरूत्वीय त्वरण ऊर्ध्वाधर नीचे की दिशा में 10m/s² है। गलत कथन चुनिये :-

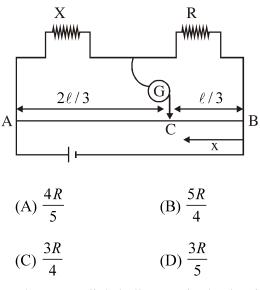
- (A) कण का उड्डयन काल 2 sec है।
- (B) कण की परास 20 है।
- (C) कण का कुल विस्थापन 0 m है ।
- (D) कण सरल रेखीय गति करेगा ।
- दो प्रतिरोधक R₁ तथा R₂ श्रेणी क्रम में जोड़े गए है । इसी प्रकार दो संधारित्र C₁ तथा C₂ भी जुड़े हैं। इन दो निकायों को चित्रानुसार बैटरी से जोड़ा जाता है । a व b के मध्य स्थायी अवस्था में विभवान्तर शुन्य है यदि

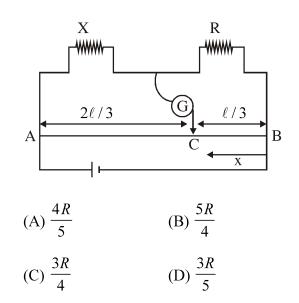



Space for rough work

***** D12291023 *****

7.



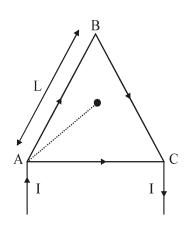


Class-XII (Shift-II)

- 10. Three 60 W light bulbs are mistakenly wired in series and connected to a 120 V power supply. Assume the light bulbs are rated for single connection to 120 V. With the mistaken connection, the power dissipated by each bulb is:
 - $(A)\,6.7~W$
 - (B) 13.3 W
 - (C) 20 W
 - (D) 40 W
- 11. A wire of uniform resistance per unit length is bent to form an equilateral triangle of side L. A current I flows into one corner and flows out of an adjacent corner, as shown. The magnetic field at the centroid of triangle due to the current in the triangular frame is

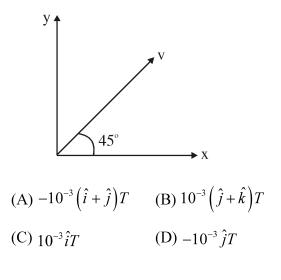
10.

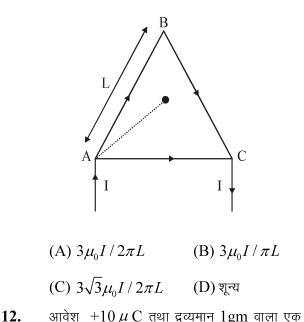
***** D12291023 *****

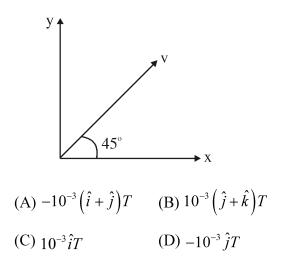

तीन 60 W के प्रकाश के बल्ब भूलवश श्रेणी में जोड़कर 120 V की आपूर्ति धारा से जोड़े गये है । माना कि प्रकाश बल्ब एकल संयोजन में 120 V वोल्ट से जोड़ा गया है । त्रुटियुक्त संयोजन में, प्रत्येक बल्ब से व्यय शक्ति होगी

- (A) 6.7 W
- (B) 13.3 W
- (C) 20 W
- (D) 40 W
- 11. प्रति इकाई एक समान प्रतिरोध वाले तार को एक L भुजा वाले समबाहु त्रिभुज के रूप में मोड़ा जाता है। एक कोने से धारा I प्रवेश करती है तथा प्ररस्पर पास वाले कोने से चित्रानुसार बाहर आती है त्रिभुज के केन्द्रक पर त्रिभुजाकार फ्रेम में प्रवाहित होने वाली धारा के कारण चुम्बकीय क्षेत्र ज्ञात करें।

Space for rough work

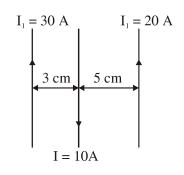





(A) $3\mu_0 I / 2\pi L$ (B) $3\mu_0 I / \pi L$ (C) $3\sqrt{3}\mu_0 I / 2\pi L$ (D) Zero

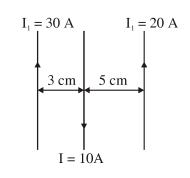
12. A charge of +10 μ C and mass of 1gm is moving with velocity of 10⁶ m/s at an angle of 45° to x & y axis as shown. It experiences a magnetic force along –ve z-direction. When it is projected with 10⁶ m/s along +ve z-direction, it experiences a magnetic force of 10⁻² N in +ve x-direction. The magnetic field \vec{B} is :

आवेश $+10 \mu$ C तथा द्रव्यमान 1gm वाला एक कण चित्रानुसार x व y अक्ष से 45° कोण पर 10⁶ m/s वेग से गतिशील है। इस पर ऋणात्मक z-दिशा के अनुदिश एक चुम्बकीय बल लगता है। जब इसे धनात्मक z-दिशा के अनुदिश 10⁶ m/s वेग से प्रक्षेपित किया जाता है तो इस पर धनात्मक x दिशा में 10⁻² N का एक चुम्बकीय बल लगता है। चुम्बकीय क्षेत्र \vec{B} का मान है–



Space for rough work

***** D12291023 *****


- 13. A charged particle moves in a magnetic field $\vec{B} = 10\hat{i}$ with initial velocity $\vec{u} = 5\hat{i} + 4\hat{j}$. The path of the particle will be
 - (A) straight line (B) circle
 - (C) helical (D) none
- 14. Three straight parallel current carrying conductors are shown in the figure. The force experienced by the middle conductor of length 25 cm is:

- (A) 3×10^{-4} N toward right
- (B) 6×10^{-4} N toward left
- (C) 9×10^{-4} N toward left
- (D) Zero
- **15.** A circular coil of radius 0.1 m and 100 turns placed in vertical plane, which is perpendicular to magnetic merdian. When currect of 2A is flow through the coil then the neutral point is obtained at the centre, then horizontal component of eart magnetic field at the place will be :

(A)
$$4\pi \times 10^{-4}T$$
 (B) $4\pi \times 10^{-3}T$
(C) $4\pi \times 10^{-7}T$ (D) $1.2 \times 10^{-4}T$

- 13. एक आवेशित कण प्रारम्भिक वेग $\vec{u} = 5\hat{i} + 4\hat{j}$ से किसी चुम्बकीय क्षेत्र $\vec{B} = 10\hat{i}$ में गति करते हैं । कण का पथ होगा ।
 - (A) सरल रेखीय (B) वृत्त
 - (C) कुण्डली (D) कोई नहीं
- 14. तीन सीधे समान्तर धारा प्रवाहित चालक चित्र में दर्शाये गये है। लम्बाई 25 cm के बीच वाले चालक द्वारा अनुभव किया गया बल है:

(A) 3 × 10⁻⁴ N दॉंयी ओर

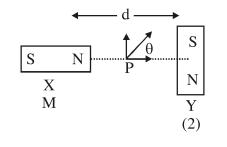
(B) 6 × 10⁻⁴ N बाँयी ओर
(C) 9 × 10⁻⁴ N बाँयी ओर
(D) शून्य

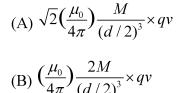
15. 0.1 m मी. त्रिज्या व 100 फेरों वाली एक वृत्ताकार कुण्डली को ऊर्ध्वाधर तल में रखा गया है जो चुम्बकीय याम्योत्तर के लम्बवत है। जब कुण्डली में 2A धारा बहती है तब केन्द्र पर उदासीन बिन्दु प्राप्त होता है तब उस स्थान पर पृथ्वी के चुम्बकीय क्षेत्र का क्षैतिज घटक होगा।

(A) $4\pi \times 10^{-4} T$	(B) $4\pi \times 10^{-3}T$
(C) $4\pi \times 10^{-7} T$	(D) $1.2 \times 10^{-4} T$

Space for rough work

***** D12291023 *****



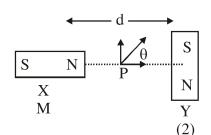

16. A long, cylindrical iron core of cross-sectional area 5.00 cm² is inserted into a long solenoid having 2000 turns m⁻¹ and carrying a current 2.00A. The magnetic field inside the core is found to be 1.57 T. Neglecting the end effects. The magnetization M is :-

(A) $1.25 \times 10^{6} \,\mathrm{Am^{-1}}$ (B) $5 \times 10^{6} \,\mathrm{Am^{-1}}$

(C)
$$3 \times 10^{6} \,\mathrm{Am^{-1}}$$
 (D) $2.50 \times 10^{6} \,\mathrm{Am^{-1}}$

17. Two magnetic dipoles X and Y are kept at a distance d apart, with their axes perpendicular to each other. The dipole moment of Y is twice that of X. P is a point along the horizontal line which is at the midpoint of d. What is the magnitude of the force on a particle of charge q passing through P at an angle $\theta = 45^{\circ}$? (*d* is very large in comparison to the size of the dipole)

(C)
$$\left(\frac{\mu_0}{\pi}\right) \frac{M}{\left(d/2\right)^3} \times qv$$


(D) 0

16. अनुप्रस्थ काट क्षेत्रफल 5.00 cm² वाली एक लम्बी बेलनाकार लौह छड़ को 2000 घेरे/मीटर वाली एक लम्बी परिनालिका में प्रविष्ट कराया जाता है, जिसमें 2.00A धारा प्रवाहित हो रही है। छड़ के अन्दर चुम्बकीय क्षेत्र 1.57 T प्राप्त होता है। सिरा प्रभावों को नगण्य मानें। चुम्बकत्व M का मान है:--

(A) $1.25 \times 10^{6} \, \text{Am}^{-1}$ (B) $5 \times 10^{6} \, \text{Am}^{-1}$

(C) $3 \times 10^{6} \,\text{Am}^{-1}$ (D) $2.50 \times 10^{6} \,\text{Am}^{-1}$

17. दो चुंबकीय द्विध्रुव X और Y को एक दूसरे के लंबवत अक्षों के साथ d की दूरी पर रखा जाता है | Y का द्विध्रुव आघूर्ण X से दोगुना है | P क्षैतिज रेखा के अनुदिश एक बिंदु है जो d के मध्य बिंदु पर है | एक कोण \(\theta\) = 45° पर P से गुजरने वाले q आवेश के कण पर बल का परिमाण क्या है? (d द्विध्रुव के आकार की तुलना में बहुत बड़ा है)

(A)
$$\sqrt{2} \left(\frac{\mu_0}{4\pi}\right) \frac{M}{(d/2)^3} \times qv$$

(B) $\left(\frac{\mu_0}{4\pi}\right) \frac{2M}{(d/2)^3} \times qv$

(C)
$$\left(\frac{\mu_0}{\pi}\right) \frac{M}{(d/2)^3} \times qv$$

(D) 0

Space for rough work

***** D12291023 *****

- **18.** A 12 V battery connected to a inductor coil of resistance 6Ω through a switch, drives a constant current in the circuit. The switch is opened in 1 ms. The average emf induced across the coil is 20 V. The inductance of the coil is :
 - (A) 8 mH
 - (B) 10 mH
 - (C) 5 mH
 - (D) 12 mH

19. A conducting circular loop of radius $\frac{10}{\sqrt{\pi}}$ cm is placed perpendicular to a uniform magnetic field of 0.5 T. The magnetic field is decreased to zero in 0.5 s at a steady rate. The induced emf in the circular loop at 0.25 s is:

- (A) emf = 1 mV
- (B) emf = 10 mV
- (C) emf = 5 mV
- (D) emf = 100 mV

- 18. एक 12 V की बैटरी स्विच के माध्यम से एक 6 Ω प्रतिरोध की प्रेरक कुंडली से जुड़ी है, जो परिपथ में स्थिर धारा प्रवाहित करती है। स्विच को 1 ms में खोला जाता है। कुण्डली में प्रेरित औसत emf 20 V है। कुंडली का प्रेरक तत्व है:
 - (A) 8 mH
 - (B) 10 mH
 - (C) $5 \, \text{mH}$
 - (D) 12 mH

19.

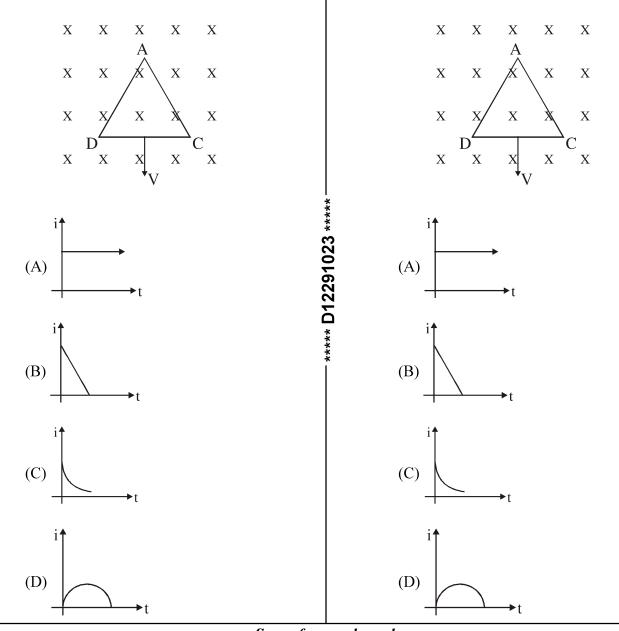
***** D12291023 *****

 10
 √π
 cm त्रिज्या के वृत्ताकार चालक लूप को 0.5 T के एक

 समान चुम्बकीय क्षेत्र में इसके लम्बवत् रखा है । चुम्बकीय क्षेत्र

 एक स्थिर दर से 0.5s में घटकर शून्य हो जाता है । वृत्ताकार

 लूप में 0.25s पर प्रेरित विद्युत वाहक बल (emf) है :


(A) emf = 1 mV
(B) emf = 10 mV
(C) emf = 5 mV
(D) emf = 100 mV

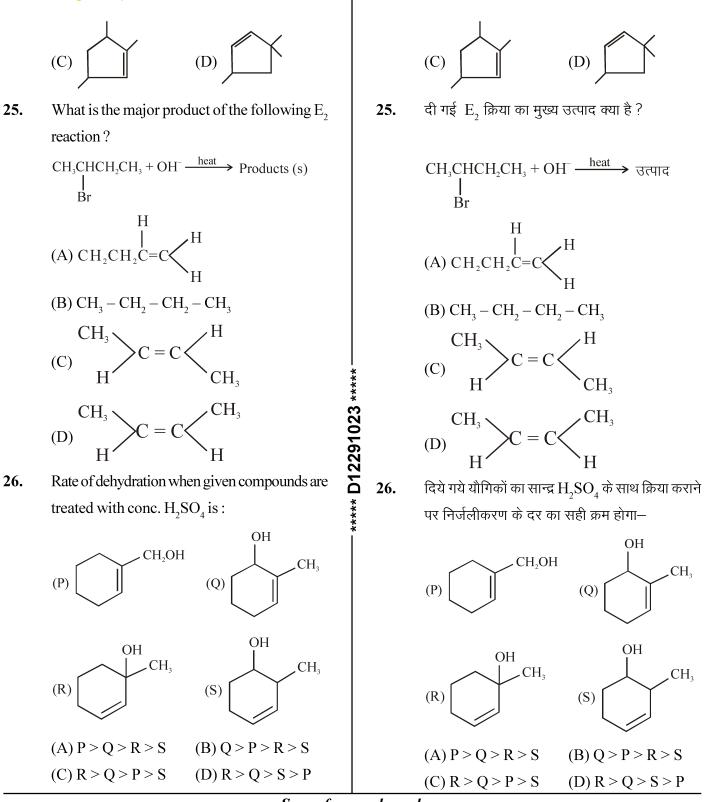
Space for rough work

Class-XII (Shift-II)

- 20. An equilateral triangular loop ADC having some resistance is pulled with a constant velocity v out of a uniform magnetic field directed into the screen. At time t = 0, side DC of the loop is at edge of the magnetic field. The induced current (i) versus time (t) graph will be as
- 20. एक समबाहु त्रिभुजीय पाशा ADC को जिसका कुछ प्रतिरोध है, पर्दे की दिशा में निर्देशित एकसमान चुंबकीय क्षेत्र से बाहर की ओर एक नियत वेग v के साथ खींचा जाता है | समय t = 0 पर, पाश की भुजा DC चुंबकीय क्षेत्र के किनारे पर है | प्रेरित धारा (i) बनाम समय (t) आलेख होगा :

Space for rough work

D12 291 023



PART II : CHEMISTRY

This section contains 20 Multiple Choice Questions (Q : 21 to Q : 40). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

21.	Molarity is expresse	ed as	21.	मोलरता को निम्नलिखि	वत में से किस इकाई के रूप में
				निरूपित किया जाता है	_
	(A) L/mol	(B) mol/L		(A) L/mol	(B) mol/L
	(C) mol/1000 g	(D) g/L		(C) mol/1000 g	(D) g/L
22.	1.0 molal aqueous so	olution of an electrolyte A ₂ B	22.	1.0 मोलल $\mathrm{A_2B}$ विद्यु	तअपघट्य का जलीय विलयन
	is 70% ionised. The	boiling point of the solution		70% आयनिकृत होत	ा है। 1 atm पर विलयन का
	at 1 atm is $(K_{b(H_2 C)})$	$_{(0)} = 0.5 \text{ K kgmol}^{-1}$		क्वथनांक बिन्दु होगाः ($(K_{b(H_2O)} = 0.5 \text{ K kgmol}^{-1})$
	(A) 101.2°C	(B) 100.35°C		(A) 101.2°C	(B) 100.35°C
	(C) 101.5°C	(D) 102°C		(C) 101.5°C	(D) 102°C
23.	The vapour pressure	e of acetone at 20°C is 185	1 * 23.	20°C पर ऐसिटोन की	ो वाष्प दाब 185 torr है। जब
	torr. When 1.2 g of	f a non-volatile substance	***	20°C पर, 1.2 g अवाष	पशील पदार्थ को $100{ m g}$ ऐसिटोन
	was dissolved in 10	00 g of acetone at 20°C, its	023	में घोला गया, तब वाष	प दाब 183 torr हो गया। इस
	vapour pressure wa	s 183 torr. The molar mass	***** D12291023 ***** ??	पदार्थ का मोलर द्रव्यमा	न (g mol ⁻¹ में) लगभग है :
	(g mol ⁻¹) of the subs	stance is approximately :	12:		
	(A) 32	(B) 64	• *	(A) 32	(B) 64
	(C) 128	(D) 488	* * *	(C) 128	(D) 488
24.	Identify the major p	product (P) obtained by the	24.	अभिक्रिया का मुख्य उत	पाद (P) पहचानिए –
	reaction:				
	ŌН			ŌН	
	H ₂ SO ₄	⁴ → P		H ₂ SO	⁴ → P
		\checkmark			\checkmark
	(A)	(B)		(A)	(B)
		Space for	rough wa		

D12 291 023

OH

OH

CH₃

 CH_3

Class-XII (Shift-II)

27.	CH ₂ -CH ₃	$\stackrel{\text{Br}}{\underset{\text{CH-CH}_{3}}{\overset{\text{CH-CH}_{3}}{\overset{\text{CH-CH}_{3}}{\overset{\text{CH-CH}_{3}}{\overset{\text{CH-CH}_{3}}{\overset{\text{CH-CH}_{3}}{\overset{\text{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}}{\overset{CH}_{3}}}{\overset{CH}_{3}}}{\overset{CH}_{3}}{\overset{CH}_{3}}$		27.	CH ₂ -CH ₃	$\xrightarrow{Br}_{CH-CH_3}$
	Which of the follow	ing statement is incorrect			उपरोक्त अभिक्रिया के	े लिए निम्न मे से कौनसा कथन
	for above reaction.				असत्य है।	
	(A) Reaction interme	ediate is carbocation			(A) अभिक्रिया मध्यवत	र्ती कार्बधनायन है
	(B) Product is mixtur	re of two enantiomers			(B) उत्पाद दो प्रतिबि	म्बरूपी का मिश्रण है
	(C) Reaction interme	ediate is stabilized by +I,			(C) अभिक्रिया मध्यवत	ff +I, अतिसंयुग्मन तथा अनुनाद
	hyperconjugatio	n & resonance			द्वारा स्थायीकृत	
	-	erature also give same				र $\operatorname{Br}_{_2}$ उच्च ताप पर समान उत्पाद
	product in the pl				देता है	
28.	Out of the followings	s best leaving group is :	 **	28.	निम्न में से सबसे अच्छ	ग निष्कासन समूह है :
	(A) F-	(B) Cl-	*** 8		(A) F [_]	(B) Cl⁻
	$(C) Br^{-}$	(D) I [_]	023		(C) Br^{-}	(D) I [_]
29.	S_{N}^{1} reactions occur	through the formation of	291	29.	$\mathbf{S}_{_{\mathrm{N}}} 1$ अभिक्रिया निम्न मे	ां से किस मध्यवर्ती के द्वारा सम्पन्न
	intermediate :		D1 2		होती है :	
	(A) Carbocation	(B) Carbanion	***** D12291023 *****		(A) कार्बधनायन	(B) कार्बऋणायन
	(C) Free radical	(D) Carbene	÷ 		(C) मुक्त मूलक	(D) कार्बीन
30.	In Brown Ring com	plex oxidation state of Fe		30.	भूरी वलय संकुल में F	e की ऑक्सीकरण अवस्था है :
	is:					
	(A)+2	(B)+3			(A)+2	(B)+3
	(C) +1	(D) +2, +3			(C) +1	(D) +2, +3
31.	The donor sites of (I	EDTA) ^{4–} are ?		31.	निम्न में से कौनसे (EI	DTA)⁴- में दाता स्थल हैं ?
	(A) O atoms only				(A) केवल ऑक्सीजन	। परमाणु
	(B) N atoms only				(B) केवल नाइट्रोजन	परमाणु
	(C) Two N atoms an	nd four O atoms				माणु और चार ऑक्सीजन परमाणु
	(D) Three N atoms a	and three O atoms			(D) तीन नाइट्रोजन प	रमाणु और तीन ऑक्सीजन परमाणु

Space for rough work

D12 291 023

32.	Complex species that not exhibits isomerism is:	32.	संकुल स्पीशीज जो समावयवता प्रदर्शित नहीं करती है :
	(A) $[Co(NH_3)_5(NO_3)]^{2+}$		(A) $[Co(NH_3)_5(NO_3)]^{2+}$
	(B) $[Pt(NH_3)_4][PtCl_4]$		(B) $[Pt(NH_3)_4][PtCl_4]$
	(C) [Fe(CO) ₃ Cl ₃]		(C) $[Fe(CO)_3Cl_3]$
	(D) $[Co(en)_2(H_2O)Br]^{2+}$		(D) $[Co(en)_2(H_2O)Br]^{2+}$
33.	The standard potentials of OCl ⁻ /Cl ⁻ and	33.	OCl⁻/Cl⁻ तथा Cl⁻/Cl₂ के लिए मानक विभव क्रमशः
	Cl^{-}/Cl_{2} are 0.94 V and $-1.36V$, respectively.		0.94 V तथा −1.36V है। OCl ^{_/} Cl ₂ के लिए E° का
	The E° value of OCI ⁻ /Cl ₂ will be :		मान होगा —
	(A) $3.24V$ (B) $-0.42V$		(A) 3.24V (B) -0.42V
	(C) $-2.30V$ (D) $0.52V$		(C) $-2.30V$ (D) $0.52V$
34.	The standard reduction potentials at 25°C for the	34.	25°C पर निम्न अर्द्ध अभिक्रियाओं के लिए मानक
	following half reactions are given against each-		अपचयन विभव प्रत्येक के सामने दिये गये है –
	$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Zn}(s), -0.762V$	 *	$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Zn}(s), -0.762V$
	$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightleftharpoons \operatorname{Cr}(s), -0.740 \operatorname{V}$	***** D12291023 ****	$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightleftharpoons \operatorname{Cr}(s), -0.740V$
	$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \Longrightarrow \mathrm{H}_{2}(\mathrm{g}), 0.00\mathrm{V}$	9102	$2\mathrm{H}^{+}+2\mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{g}), 0.00\mathrm{V}$
	$\operatorname{Fe}^{3+} + e^{-} \Longrightarrow \operatorname{Fe}^{2+}, 0.77 \operatorname{V}$	1229	$\mathrm{Fe}^{3+} + \mathrm{e}^{-} \Longrightarrow \mathrm{Fe}^{2+}, 0.77\mathrm{V}$
	Which is the strongest reducing agent–	O *	कौनसा प्रबलतम अपचायक है –
	(A)Zn (B)Cr	**** -	(A)Zn (B)Cr
	(C) $H_2(g)$ (D) $Fe^{3+}(aq)$		(C) $H_2(g)$ (D) $Fe^{3+}(aq)$
35.	The equivalent conductance of a N/10 NaCl solution	35.	25°C पर N/10 NaCl विलयन की तुल्यांकी चालकता
	at 25°C is 10 ⁻² Sm ² eq ⁻¹ . Resistance of solution		$10^{-2}~{ m Sm^2eq^{-1}}$ है। यदि सेल में विलयन का प्रतिरोध
	contained in the cell is 50Ω . Cell constant is:		50Ω है तो सेल नियतांक निम्न होगा —
	(A) $50m^{-1}$		(A) $50m^{-1}$
	(B) $50 \times 10^{-6} \mathrm{m}^{-1}$		(B) $50 \times 10^{-6} \mathrm{m}^{-1}$
	(C) $50 \times 10^{-3} \text{m}^{-1}$		(C) $50 \times 10^{-3} \text{m}^{-1}$
	(D) $50 \times 10^3 \mathrm{m}^{-1}$		(D) $50 \times 10^3 \mathrm{m}^{-1}$

Space for rough work

D12 291 023

36. The correct difference between first and second-order reactions is that -

(A) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed

(B) the rate of a first -order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations

(C) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations

(D) the half-life of first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_0$

37. For the chemical reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

(A)
$$3\frac{d[H_2]}{dt} = 2\frac{d[NH_3]}{dt}$$

(B) $-\frac{1}{3}\frac{d[H_2]}{dt} = -\frac{1}{2}\frac{d[NH_3]}{dt}$
(C) $-\frac{d[N_2]}{dt} = 2\frac{d[NH_3]}{dt}$
(D) $-\frac{d[N_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$

 प्रथम कोटि एवं द्वितीय कोटि अभिक्रिया में सही विभिन्नता है –

> (A) प्रथम कोटि की अभिक्रिया को उत्प्रेरित किया जा सकता है; द्वितीय कोटि की अभिक्रिया को उत्प्रेरित नहीं किया जा सकता है

> (B) प्रथम कोटि की अभिक्रिया का वेग अभिकारक की सान्द्रताओं पर निर्भर नहीं करता है; द्वितीय कोटि की अभिक्रिया का वेग अभिकारक की सान्द्रताओं पर निर्भर करता है

> (C) प्रथम कोटि की अभिक्रिया का वेग अभिकारक की सान्द्रताओं पर निर्भर करता है; द्वितीय कोटि की अभिक्रिया का वेग अभिकारक की सान्द्रताओं पर निर्भर नहीं करता है

> (D) प्रथम कोटि की अभिक्रिया की अर्ध — आयु $[A]_0$ पर निर्भर नहीं है; द्वितीय कोटि की अभिक्रिया की अर्ध — आयु $[A]_0$ पर निर्भर है

37. रासायनिक अभिक्रिया

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ के लिए सही विकल्प है–

(A)
$$3\frac{d[H_2]}{dt} = 2\frac{d[NH_3]}{dt}$$

(B) $-\frac{1}{3}\frac{d[H_2]}{dt} = -\frac{1}{2}\frac{d[NH_3]}{dt}$
(C) $-\frac{d[N_2]}{dt} = 2\frac{d[NH_3]}{dt}$
(D) $-\frac{d[N_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$

Space for rough work

***** D12291023 *****

- **38.** For which order half-life period is independent of initial concentration ?
 - (A) Zero
 - (B) First
 - (C) Second
 - (D) Third
- **39.** Which of the following reaction occurs ONLY
 - in acidic medium.
 - (A) $\operatorname{MnO}_{4}^{-} + \operatorname{Cl}^{-} \rightarrow \operatorname{Mn}_{(\operatorname{aq.})}^{2+} + \operatorname{Cl}_{2} \uparrow$
 - (B) $MnO_4^- + I^- \rightarrow MnO_2 + IO_3^-$
 - (C) $MnO_4^- + C_2O_4^{2-} \rightarrow MnO_4^{2-} + CO_3^{2-}$
 - (D) $MnO_4^{2-} \rightarrow MnO_2 + MnO_4^{-}$
- **40.** FeSO₄ $(NH_4)_2$ SO₄ $.6H_2O$ is called
 - (A) Green salt
 - (B) Glauber's salt
 - (C) Mohr's salt
 - (D)Alum

- 38. निम्नलिखित में से किस कोटि की अभिक्रिया के लिए अर्द्ध आयुकाल प्रारम्भिक सान्द्रता पर निर्भर नहीं करता है?
 - (A) शून्य
 - (B) प्रथम
 - (C) द्वितीय
 - (D) तृतीय
- 39. निम्न में से कौनसी अभिक्रिया केवल अम्लीय माध्यम में

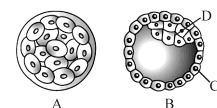
सम्पन्न होती है। (A) $MnO_4^- + Cl^- \rightarrow Mn^{2+}_{(aq)} + Cl_2 \uparrow$

- (a) (a) (a) (a) (a) (a)
- (B) $MnO_4^- + I^- \rightarrow MnO_2 + IO_3^-$
- (C) $MnO_4^- + C_2O_4^{2-} \rightarrow MnO_4^{2-} + CO_3^{2-}$
- (D) $MnO_4^{2-} \rightarrow MnO_2 + MnO_4^{-}$
- **40.** FeSO_4 .(NH₄)₂ SO₄ .6H₂O कहलाता है
 - (A) Green salt
 - (B) Glauber's salt
 - (C) Mohr's salt
 - (D)Alum

Space for rough work

***** D12291023 *****

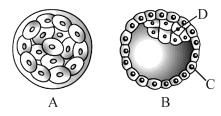
Class-XII (Shift-II)


PART III : BIOLOGY

This section contains 20 Multiple Choice Questions (Q : 41 to Q : 60). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

- 41. 120 Plants are produced on crossing pure violet and pure white flowered pea plants, the ratio is
 - (A) 90 violet : 30 White
 - (B) 30 violet : 90 White
 - (C) 60 violet : 60 White
 - (D)All violet

:


42. Identify the stages A and B and what is the **correct** labelling of C and D?

Choose the **correct** option :

	Α	В	С	D
(1)	Morula	Blastocyst	Follicular	Inner cell
			cells	mass
(2)	Morula	Blastocyst	Embryo-	Tropho-
			blast	blast
(3)	Morula	Blastocyst	Tropho-	Inner cell
			blast	mass
(4)	Blastocyst	Morula	Tropho-	Inner cell
			blast	mass

- शुद्ध बैंगनी तथा शुद्ध श्वेत पुष्पधारी मटर के पादप के
 बीच क्रॉसिंग द्वारा 120 पादप उत्पन्न होते हैं। इनका
 अनुपात है:
 - (A) 90 बैंगनी : 30 सफेद
 - (B) 30 बैंगनी : 90 श्वेत
 - (C) 60 बैंगनी : 60 श्वेत
 - (D) सभी बैंगनी
- 42. A व B अवस्थाओं को पहचानिये और C व D के लिए सही नाम कौनसा है?

सही विकल्प का चयन कीजिये :

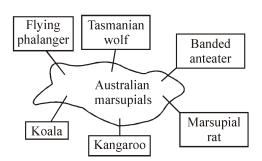
	Α	В	С	D
(1)	मोरूला	कोरकपुटी	पुटिकीय	अन्तर कोशिकीय समूह
			कोशिकायें	
(2)	मोरूला	कोरकपुटी	एम्ब्रियोब्लास्ट	पोषककोरक
(3)	मोरूला	कोरकपुटी	पोषकोरक	अन्तर कोशिकीय समूह
(4)	कोरकपुटी	मोरूला	पोषकोरक	अन्तर कोशिकीय समूह

Space for rough work

***** D12291023 *****

Note : Please do not attempt this section if you are a Maths student.

43.	Fertilisation in human	beings occurs in :		43.	मानव में निषेचन किसमें ह	ोता है?
	(A) Isthmus				(A) इरथमस में	
	(B)Ampullary-isthmic	junction			(B) तुंबिका इस्थमस संधि	ा में
	(C) Uterus				(C) गर्भाशय में	
	(D) Infundibulum				(D) कीपक में	
44.	Pollination in water h	yacinth and water lily is		44.	जल हायसिन्थ और वाटर	लिली में परागण किसके द्वारा
	brought about by the a	agency of :			होता है:	
	(A) Bats	(B) Water			(A) चमगादड़ द्वारा	(B) जल द्वारा
	(C) Insects or wind	(D) Birds			(C) कीटों या वायु द्वारा	(D) पक्षियों द्वारा
45.	Seminal plasma in hur	nans is rich in :		45.	मानवों में शुक्र प्लाज्मा कि	ससे प्रचुर होता है :
	(A) Fructose and cert	ain enzymes but poor in			(A) फ्रक्टोज तथा कुछ एं	जाइम से प्रचुर परंतु कैल्सियम
	calcium				बहुत कम होते हैं	
	(B) Fructose, calcium	and certain enzymes	. ****		(B) फ्रक्टोज, कैल्सियम	तथा कुछ एंजाइम से प्रचुर
	(C) Fructose and calcium but has no enzymes		***** D12291023 *****	× 23	(C) फ्रक्टोज और कैल्सिर	ग्म से प्रचुर, परंतु एंजाइम नहीं
			910		होते हैं	
	(D) Glucose and cert	ain enzymes but has no	122		(D) ग्लूकोज और कुछ एं	जाइम से प्रचुर, परंतु कैल्सियम
	calcium		O **		नहीं होते हैं	
46.	DNA segment of 340	Å will have base pairs :	*** -	46.	340 Å के DNA खण्ड में	कितने जोडे नाइट्रोजन क्षारक
					होंगे:	
	(A) 10	(B) 34			(A) 10	(B) 34
	(C) 100	(D) 340			(C) 100	(D) 340
47.	When two hybrids Tt	rr & Rrtt are crossed the		47.	जब दो संकर Ttrr तथा	Rrtt का क्रॉस कराते हैं तो
	phenotypic ratio of off	fspring shall be :			संतति में लक्षण प्रारूपी अ	नुपात होगा :
	(A) 3 : 1	(B) 1 : 1 : 1 : 1			(A) 3 : 1	(B) 1 : 1 : 1 : 1
	(C) 1 : 1	(D) 9 : 3 : 3 : 1			(C) 1 : 1	(D) 9 : 3 : 3 : 1

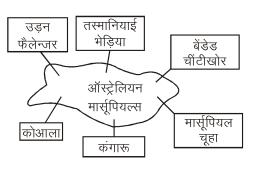

Space for rough work

Note : Please do not attempt this section if you are a Maths student.

48. The function of copper ions in copper releasing IUD's is :

(A) They suppress sperm motility and fertilising capacity of sperms

- (B) They inhibit gametogenesis
- (C) They make uterus unsuitable for implantation
- (D) They inhibit ovulation
- 49. Which of the following is incorrect regarding vasectomy?
 - (A) No sperms occur in seminal fluid
 - (B) No sperms occur in epididymis
 - (C) Vasa deferentia is cut and tied
 - (D) Irreversible sterility
- 50. Following diagram provides an example of :



- (A) Convergent evolution
- (B) Parallel evolution
- (C) Recapitulation
- (D) Divergent evolution

48. ताँबा मोचक IUD में कॉपर आयन्स का कार्य है :

(A) ये शुक्राणु गतिशीलता तथा शुक्राणु की निषेचन क्षमता
 का दमन करते हैं

- (B) ये युग्मक जनन को रोकते हैं
- (C) ये गर्भाशय को रोपण के लिए अनुपयुक्त बनाते हैं
- (D) ये अण्डोत्सर्ग को रोकते हैं
- 49. वासेक्टोमी के लिए कौनसा कथन **गलत** है ?
 - (A) शुक्र तरल में शुक्राणु नहीं होते
 - (B) अधिवृषण में शुक्राणु नहीं होते
 - (C) शुक्रवाहिनी को काटकर बांधा जाता है
 - (D) अनुत्क्रमणीय बन्ध्यता
- 50. निम्न चित्र किसका एक उदाहरण उपलब्ध कराता है :

- (A) अभिसारी उद्विकास
- (B) समानांतर उद्विकास
- (C) पुनरावर्तन
- (D) अपसारी उद्विकास

Space for rough work

***** D12291023 *****

Note : Please do not attempt this section if you are a Maths student.

51.	Ultimate source of variation is :		51.	विभिन्नता का अन्तिम स्रोत है :
	(A) Mutation			(A) उत्परिवर्तन
	(B) Sexual reproduction			(B) लैंगिक जनन
	(C) Genetic drift			(C) आनुवांशिक विचलन
	(D) Gene flow			(D) जीन प्रवाह
52.	The chronological order of human evolution		52.	प्रारम्भ से आधुनिक की तरफ मानव उद्विकास का
	from early to the recent is :			कालानुक्रम है :
	(A) Australopithecus \rightarrow Ramapithecus \rightarrow			 (A) ऑस्ट्रेलोपिथेकस → रामापिथेकस → होमो
	Homo habilis \rightarrow Homo erectus			हेबिलिस → होमो इरेक्टस
	(B) Ramapithecus \rightarrow Australopithecus \rightarrow			(B) रामापिथेकस → ऑस्ट्रेलोपिथेकस → होमो
	Homo habilis \rightarrow Homo erectus			हेबिलिस → होमो इरेक्टस
	(C) Ramapithecus \rightarrow Homo habilis \rightarrow			(C) रामापिथेकस → होमो हेबिलिस →
	Australopithecus \rightarrow Homo erectus	****		ऑस्ट्रेलोपिथेकस→ होमो इरेक्टस
	(D) Australopithecus \rightarrow Homo habilis \rightarrow	***** D12291023 *****		(D) ऑस्ट्रेलोपिथेकस → होमो हेबिलिस →
	Ramapithecus \rightarrow Homo erectus	910		रामापिथेकस→ होमो इरेक्टस
53.	Pollen tablets are avalable in the market for :	122	53.	पराग गोलियां बाजार में किस लिए उपलब्ध हैं :
	(A) In vitro fertilization	D **		(A) इन विट्रो निषेचन के लिए
	(B) Breeding programmes	***		(B) प्रजनन योजनाओं के लिए
	(C) Supplementing food			(C) खाद्य सम्पूरण के लिए
	(D) Ex situ conservation			(D) बाह्यस्थाने संरक्षण के लिए
54.	Coconut water from a tender coconut is :		54.	कच्चे नारियल में नारियल का पानी क्या होता है :
	(A) Free nuclear endosperm			(A) मुक्त केन्द्रकी भ्रूणपोष
	(B) Innermost layers of the seed coat			(B) बीज चोल की सबसे अंदर वाली सतह
	(C) Degenerated nucellus			(C) अपभ्रष्ट बीजाण्डकाय
	(D) Immature embryo			(D) अपरिपक्व भ्रूण

Т

Space for rough work

Note : Please do not attempt this section if you are a Maths student.

आवृतबीजी पादपों में लघूबीजाणूजनन और गूरूबीजाणू 55. In angiosperms, microsporogenesis and 55. megasporogenesis: जनन: (A) बिना अग्र विभाजन के युग्मक बनाते है (A) Form gametes without further divisions (B) अर्द्धसूत्री विभाजन द्वारा होते है (B) Involve meiosis (C) बीजाण्ड में होता है (C) Occur in ovule (D) परागकोष में होता है (D) Occur in anther एक दम्पति के रुधिर वर्ग AB तथा O है। बच्चे का 56. Blood group of a couple are AB and O. The 56. सम्भावित रुधिर वर्ग होगा : possible blood group of children would be : (A) O group only (A) केवल O वर्ग (B) AB blood group (B) AB रक्त समूह (C) A or B (C) A तथा B (D) AB and O (D) AB तथा O 57. ***** D12291023 ***** 57. एक सामान्य महिला जिसके पिता वर्णांध थे, का विवाह A normal woman whose father was colour blind. सामान्य पुरूष से होता है तो पुत्र होगें : is married to a normal man. The sons would be: (A) 75% वर्णाध (A) 75% colourblind (B) 50% colourblind (B) 50% वर्णाध (C) सभी वर्णाध (C)All colourblind (D) सभी सामान्य (D) All normal अनूलेखन के समय इन्ट्रॉन्स का निष्कासन तथा एक्सॉन्स 58. Removal of intron joining of exons in defined 58. का एक निश्चित क्रम में जुड़ना कहलता हैं : order during transcription is called : (A) स्लाइसिंग (Slicing) (A) Slicing (B) समबन्धन (Splicing) (B) Splicing (C) Looping (C) पाशन (Looping) (D) Inducing (D) प्रेरण (Inducing)

Space for rough work

Note : Please do not attempt this section if you are a Maths student.

Class-XII (Shift-II)

59.

60.

What will be the sequence of mRNA produced		59.	DNA के निम्न रज्जुक द्वारा mRNA का कौनसा अनुक्रम
by the following stretch of DNA :			निर्मित होगा :
3' ATGCATGCATGCATG 5' TEMPLATE			3' ATGCATGCATGCATG 5' TEMPLATE
STRAND			STRAND
5' TACGTACGTACGTAC 3' CODING			5' TACGTACGTACGTAC 3' CODING
STRAND			STRAND
(A) 3' AUGCAUGCAUGCAUG 3'			(A) 3'AUGCAUGCAUGCAUG 3'
(B) 3'AUGCAUGCAUGCAUG 5'			(B) 3'AUGCAUGCAUGCAUG 5'
(C) 5' UACGUACGUACGUAC 3'			(C) 5' UACGUACGUACGUAC 3'
(D) 3' UACGUACGUACGUAC 5'			(D) 3' UACGUACGUACGUAC 5'
In the DNA molecules :	*	60.	DNA अणुओं में :
(A) There are two strands which run antiparallel	***** D12291023 *****		(A) दो सूत्र होते हैं, जो एक–दूसरे के प्रतिसमान्तर गति
one in 5' \rightarrow 3' direction and other in 3' \rightarrow 5'	102		करते है जिनमें से एक 5'→3' दिशा में तथा दूसरा
	1229		3'→5' में गति करता है
(B) The total amount of purine nucleotides and	Ò *		(B) प्यूरिन न्यूक्लिओटाइडो की कुल मात्रा सदैव
pyrimidine nucleotides is not always equal	***		पिरीमिडीन न्यूक्लिओटाइडों के बराबर नहीं होती है
(C) There are two strands which run parallel in			(C) दो सूत्र होते हैं, जो एक−दूसरे के समान्तर 5'→3'
the 5' \rightarrow 3' direction			दिशा में गति करते हैं
(D) The proportion of adenine in relation to			(D) एडीनिन का अनुपात थाइमिन की तुलना में जीव के
thymine varies with the organism			साथ परिवर्तित होता हैं

Space for rough work

D12 291 023

Note : Please do not attempt this section if you are a Maths student.

"You don't have to be great to start. But you have to start to be great."

Page No.: 22

PART III : MATHEMATICS

This section contains 20 Multiple Choice Questions (Q: 41 to Q: 60). Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Т

41.	If $\begin{vmatrix} 1 & -3 & 4 \\ -5 & x+2 & 2 \\ 4 & 1 & x-6 \end{vmatrix} = 0$, then value(s) of x	41.	यदि $\begin{vmatrix} 1 & -3 & 4 \\ -5 & x+2 & 2 \\ 4 & 1 & x-6 \end{vmatrix} = 0, \ \pi i \ \pi i / \pi i$ मान
	is/are:		होगा/होंगे :
	(A) 0		(A) 0
	(B) 21		(B) 21
	(C) 17		(C) 17
	(D) 36		(D) 36
42.	If $y = x^x$, then $\frac{dy}{dx} =$	42.	यदि $y = x^x$, तो $\frac{dy}{dx} =$
	$(A) x^{x} (1 - \log x)$	023	$(A) x^{x} (1 - \log x)$
	$(B) x^{x}(1 + \log x)$	1.677	$(B) x^{x}(1 + \log x)$
	$(C) x^{x} \log x$	<u>ר</u> <u>ה</u>	(C) $x^x \log x$
	(D) None of these	~ * * *	(D) इनमें से कोई नहीं
43.	The tangent to the curve $y = ax^2 + bx$ at $(2, -8)$	43.	यदि वक्र y = ax² + bx के बिन्दु (2, –8) पर स्पर्श रेखा
	is parallel to x-axis then :		x-अक्ष के समान्तर है तो :
	(A) $a = 4, b = -4$		(A) $a = 4, b = -4$
	(B) $a = 2, b = -8$		(B) $a = 2, b = -8$
	(C) $a = 2, b = -4$		(C) $a = 2, b = -4$
	(D) $a = 2, b = -2$		(D) $a = 2, b = -2$

Space for rough work

Note : Please do not attempt this section if you are a Biology student.

			Class-XII (Shift-II)
44.	$sin [tan^{-1}2 + cot^{-1}2]$ is equal to :	44.	$\sin [\tan^{-1}2 + \cot^{-1}2]$ बराबर होगा :
	(A) 0		(A) 0
	(B) 1		(B) 1
	(C) –1		(C) –1
	(D) $\frac{1}{2}$		(D) $\frac{1}{2}$
45.	If A = $\begin{bmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{bmatrix}$ is symmetric matrix,	45.	यदि A = $\begin{bmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{bmatrix}$ एक सममित आव्यूह है
	then x =		तो x =
	(A) 3		(A) 3
	(B) 5		(B) 5
	(C) 2		(C) 2
	(D) 4	* * *	(D) 4
46.	In which interval $f(x) = \sin x$ is strictly increas-	ະ ສ 46.	f(x) = sin x किस अन्तराल में निरन्तर वर्धमान फलन
	ing function where $x \in (0, \pi)$	910	होगा यदि $\mathbf{x} \in (0, \pi)$
	$(A)\left(0,\frac{\pi}{2}\right)$	***** D12291023 ***** 95	$(A)\left(0,\frac{\pi}{2}\right)$
	$(B)\left(\frac{\pi}{2},\pi\right)$	****	$(B)\left(\frac{\pi}{2},\pi\right)$
	$(C)\left(\frac{3\pi}{4},\pi\right)$		$(C)\left(\frac{3\pi}{4},\pi\right)$
	(D) None of these		(D) इनमें से कोई नहीं
47.	If $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $f(x) = (I + x) (I - x)$ then	47.	यदि A = $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ तथा f(x) = (I + x) (I - x) तो
	f(A) equals :		f(A) बराबर होगा :
	(A)–2A (B)A		(A) –2A (B) A
	(C) 16A (D) 2A		(C) 16A (D) 2A
	~ ~ ~		1

D12 291 023

(Note : Please do not attempt this section if you are a Biology student.)

48. Let A and B be two non-zero square matrices and AB and BA both are defined. It means
(A) No. of columns of A ≠ No. of rows of B
(B) No. of rows of A ≠ No. of columns of B
(C) Both matrices (A) and (B) have same order
(D) Both matrices (A) and (B) does not have

(D) Both matrices (A) and (B) does not have same order

49. If
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and
 $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then B equals
(A) $I \cos \theta + J \sin \theta$
(B) $I \cos \theta - J \sin \theta$
(C) $I \sin \theta + J \cos \theta$
(D) $-I \cos \theta + J \sin \theta$
50. Which of the following is correct?
(A) Determinant is a square matrix
(B) Determinant is a number associated with
a matrix
(C) Determinant is a number associated with
a square matrix

(D) None of these

- 48. माना A तथा B दो अशून्य वर्ग आव्यूह हैं तथा AB तथा BA परिभाषित हैं । इसका तात्पर्य है : (A) A में स्तम्भों की संख्या ≠ B में पंक्तियों की संख्या (B) A में पंक्तियों की संख्या ≠ B में स्तम्भों की संख्या (C) (A) तथा (B) दोनों समान कोटि के हैं
 - (D) (A) तथा (B) समान कोटि के नहीं हैं

49.
$$\operatorname{val} I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \operatorname{red} I$$

 $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \operatorname{red} B$ at lat $\operatorname{Elve} I$ in B
(A) $I \cos \theta + J \sin \theta$
(B) $I \cos \theta - J \sin \theta$
(C) $I \sin \theta + J \cos \theta$
(D) $-I \cos \theta + J \sin \theta$

- 50. निम्नलिखित में से कौनसा कथन सत्य है?
 - (A) सारणिक एक वर्ग आव्यूह है
 - (B) सारणिक एक आव्यूह से संबंधित एक संख्या है

(C) सारणिक एक वर्ग आव्यूह से संबंधित एक संख्या

- है
- (D) इनमें से कोई नहीं

Space for rough work

Note : Please do not attempt this section if you are a Biology student.

Class-XII (Shift-II)				
51.	The domain of the function defined by $f(x) =$	51.	फलन f(x) = sin ⁻¹ x + cos x का प्रान्त होगा :	
52.	sin ⁻¹ x + cos x is (A) [-1,1] (B) [-1, π + 1] (C) (- ∞ , ∞) (D) ϕ The radius of a sphere is increasing at the rate of 4 cm/s. Then the rate by which its surface area increases, when r = 5 cm, is : (A) 80 π cm ² /s (B) 100 π cm ² /s (C) 160 π cm ² /s (D) 400 π cm ² /s	52.	(A) $[-1,1]$ (B) $[-1, \pi + 1]$ (C) $(-\infty,\infty)$ (D) ϕ यदि एक गोले की त्रिज्या में 4 cm/s की दर से वृद्धि हो रही है तो गोले के पृष्ठीय क्षेत्रफल में किस दर से वृद्धि होगी जब r = 5 cm हो : (A) 80π cm ² /s (B) 100π cm ² /s (C) 160π cm ² /s (D) 400π cm ² /s	
53.	Let $f(x) = \begin{vmatrix} \sin^{2} x & \cos^{2} x & 1 + 4\sin 4x \\ \sin^{2} x & 1 + \cos^{2} x & 4\sin 4x \\ 1 + \sin^{2} x & \cos^{2} x & 4\sin 4x \end{vmatrix}.$ The value of $f\left(\frac{\pi}{4}\right)$ is (A) 1 (B) 2 (C) -2 (D) -1	***** D12291023 ***** 23.	माना $f(x) = \begin{vmatrix} \sin^2 x & \cos^2 x & 1+4\sin 4x \\ \sin^2 x & 1+\cos^2 x & 4\sin 4x \\ 1+\sin^2 x & \cos^2 x & 4\sin 4x \end{vmatrix}$ $\overrightarrow{rt} f\left(\frac{\pi}{4}\right) \overrightarrow{rt} = \overrightarrow{rt} = \overrightarrow{rt} = \overrightarrow{rt}$ (A) 1 (B) 2 (C) -2 (D) -1	
	Space for	rough wo	rk	

Space for rough work

(Note : Please do not attempt this section if you are a Biology student.)

53. A relation R is defined on the set of real numbers such that $R = \{(a,b) : |a-b| \text{ is divisible by} \}$

6}, then R is

- (A) Equivalence
- (B) Symmetric but not reflexive
- (C) Not transitive
- (D) Reflexive but not transitive

55. If
$$y = \left(\frac{1}{x}\right)^x$$
, then value of $e^e \left(\frac{d^2 y}{dx^2}\right)_{x=e}$ is
(A) $2 - \frac{1}{e}$
(B) $4 - \frac{1}{e}$
(C) $\frac{1}{e}$
(D) $1 - \frac{1}{e}$
56. If $f(x) = \begin{cases} \frac{\sqrt{1 - \cos 2x}}{x\sqrt{2}} & x \neq 0 \\ x\sqrt{2} & x \neq 0 \end{cases}$, then the

value of k will make function continuous at

 $\mathbf{x} = \mathbf{0}$

k

x = 0 is: (A) 1

(B)-1

(C) 0

(D) No value

- **53.** एक संबंध R वास्तविक संख्याओं में इस प्रकार परिभाषित है $R = \{(a,b) : |a - b| \ 6 \ R$ भाज्य है}, तो R है:
 - (A) तुल्यता संबंध
 - (B) सममित परन्तु स्वतुल्य नहीं
 - (C) संक्रामक नहीं
 - (D) स्वतुल्य परन्तु संक्रामक नहीं

55.
$$u \exists y = \left(\frac{1}{x}\right)^{x}$$
, $d t e^{e} \left(\frac{d^{2}y}{dx^{2}}\right)_{x=e}$ on Hirt Elitin :
(A) $2 - \frac{1}{e}$
(B) $4 - \frac{1}{e}$
(C) $\frac{1}{e}$
(D) $1 - \frac{1}{e}$
56. $u \exists f(x) = \begin{cases} \frac{\sqrt{1 - \cos 2x}}{x\sqrt{2}} & x \neq 0 \\ x \sqrt{2} & x \neq 0 \end{cases}$, $d t k d k Hirt Hirt k = 0$
(D) $d t k = 0$

Space for rough work

(C) 0

(D) कोई मान नहीं

***** D12291023 *****

Class-XII (Shift-II)				
57.	Local maximum value of the function $\frac{\log x}{x}$ is	57.	<u>log x</u> का स्थानीय उच्चिष्ठ मान होगा : x	
	(A) e (B) 1		(A) e (B) 1	
	(C) $\frac{1}{e}$		(C) $\frac{1}{e}$	
	(D) 2e		(D) 2e	
58.	If $y = \frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}}$, then $\frac{dy}{dx}$	58.	यदि $y = \frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}}$ तो $\frac{dy}{dx}$	
	(A) $\frac{-8}{\left(e^{2x}-e^{-2x}\right)^2}$		(A) $\frac{-8}{\left(e^{2x}-e^{-2x}\right)^2}$	
	$(B) \frac{8}{\left(e^{2x} - e^{-2x}\right)^2}$	*****	$(B) \frac{8}{\left(e^{2x} - e^{-2x}\right)^2}$	
	(C) $\frac{-4}{\left(e^{2x} - e^{-2x}\right)^2}$	*****	(C) $\frac{-4}{\left(e^{2x} - e^{-2x}\right)^2}$	
	(D) $\frac{4}{\left(e^{2x}-e^{-2x}\right)^2}$		(D) $\frac{4}{\left(e^{2x}-e^{-2x}\right)^2}$	
59.	If $f(x) = 2x + 5$, then find $f^{-1}(6)$:	59.	यदि f(x) = 2x + 5, तो f ⁻¹ (6) का मान होगा :	
	$(A) - \frac{1}{2}$		(A) $-\frac{1}{2}$	
	(B) $\frac{1}{3}$		(B) $\frac{1}{3}$	
	(C) $-\frac{1}{3}$		(C) $-\frac{1}{3}$	
	(D) $\frac{1}{2}$		(D) $\frac{1}{2}$	

D12 291 023

60.	If $x = a \sin \theta$ and $y = b \cos \theta$, then $\frac{d^2 y}{dx^2}$ is:	60.	यदि x = a sin θ तथा y = b cos θ , तो $\frac{d^2y}{dx^2}$ होगा:
	(A) $\frac{a}{b^2} \sec^2 \theta$		(A) $\frac{a}{b^2} \sec^2 \theta$
	(B) $\frac{-b}{a}\sec^2\theta$		(B) $\frac{-b}{a}\sec^2\theta$
	(C) $\frac{-b}{a^2} \sec^3 \theta$		(C) $\frac{-b}{a^2} \sec^3 \theta$
	(D) $\frac{-b^2}{a^2} \sec^2 \theta$		(D) $\frac{-b^2}{a^2} \sec^2 \theta$